Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 1 - 10 of 12 Standards

Standard Identifier: 3-LS3-2

Grade: 3
Disciplinary Core Idea: LS3.A: Inheritance of Traits, LS3.B: Variation of Traits
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Life Science

Title: 3-LS3 Heredity: Inheritance and Variation of Traits

Performance Expectation: Use evidence to support the explanation that traits can be influenced by the environment. [Clarification Statement: Examples of the environment affecting a trait could include normally tall plants grown with insufficient water are stunted; and, a pet dog that is given too much food and little exercise may become overweight.]

Disciplinary Core Idea(s):
LS3.A: Inheritance of Traits Other characteristics result from individuals’ interactions with the environment, which can range from diet to learning. Many characteristics involve both inheritance and environment. LS3.B: Variation of Traits The environment also affects the traits that an organism develops.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Use evidence (e.g., observations, patterns) to support an explanation.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.2.a–d: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. SL.3.4: Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. a. Plan and deliver an informative/explanatory presentation on a topic that: organizes ideas around major points of information, follows a logical sequence, includes supporting details, uses clear and specific vocabulary, and provides a strong conclusion. Mathematics MP.4: Model with mathematics. MP.2: Reason abstractly and quantitatively. 3.MD.4: Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters.

DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: MS.LS1.B

Standard Identifier: 3-LS4-2

Grade: 3
Disciplinary Core Idea: LS4.B: Natural Selection
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Life Science

Title: 3-LS4 Biological Evolution: Unity and Diversity

Performance Expectation: Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. [Clarification Statement: Examples of cause and effect relationships could be plants that have larger thorns than other plants may be less likely to be eaten by predators; and, animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.]

Disciplinary Core Idea(s):
LS4.B: Natural Selection Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Use evidence (e.g., observations, patterns) to construct an explanation.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RI.3.1.a–d: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2.a–d: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.2: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. SL.3.4: Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. a. Plan and deliver an informative/explanatory presentation on a topic that: organizes ideas around major points of information, follows a logical sequence, includes supporting details, uses clear and specific vocabulary, and provides a strong conclusion. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.

DCI Connections:
Connections to other DCIs in third grade: 3.LS4.C Articulation across grade-levels: MS.LS2.A; MS.LS3.B; MS.LS4.B

Standard Identifier: 4-ESS2-1

Grade: 4
Disciplinary Core Idea: ESS2.A: Earth Materials and Systems, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Earth and Space Science

Title: 4-ESS2 Earth’s Systems

Performance Expectation: Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. [Clarification Statement: Examples of variables to test could include angle of slope in the downhill movement of water, amount of vegetation, speed of wind, relative rate of deposition, cycles of freezing and thawing of water, cycles of heating and cooling, and volume of water flow.] [Assessment Boundary: Assessment is limited to a single form of weathering or erosion.]

Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. ESS2.E: Biogeology Living things affect the physical characteristics of their regions.

Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy W4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 4.MD.A.1: Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1,12), (2, 24), (3,36),... 4.MD.2: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.

DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS1.C; 2.ESS2.A; 5.ESS2.A

Standard Identifier: 5-ESS2-1

Grade: 5
Disciplinary Core Idea: ESS2.A: Earth Materials and Systems
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: 5-ESS2 Earth’s Systems

Performance Expectation: Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. [Clarification Statement: The geosphere, hydrosphere (including ice), atmosphere, and biosphere are each system is a part of the whole Earth System. Examples could include the influence of the ocean on ecosystems, landform shape, and climate; the influence of the atmosphere on landforms and ecosystems through weather and climate; and the influence of mountain ranges on winds and clouds in the atmosphere. The geosphere, hydrosphere, atmosphere, and biosphere are each a system.] [Assessment Boundary: Assessment is limited to the interactions of two systems at a time.]

Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Earth’s major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth’s surface materials and processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather.

Science & Engineering Practices: Developing and Using Models Develop a model using an example to describe a scientific principle.

Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.

California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 5.G.2: Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.

DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.ESS2.A; 3.ESS2.D; 4.ESS2.A; MS.ESS2.A; MS.ESS2.C; MS.ESS2.D

Standard Identifier: 5-LS2-1

Grade: 5
Disciplinary Core Idea: LS2.A: Interdependent Relationships in Ecosystems, LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: 5-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. [Clarification Statement: Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems, and the Earth.] [Assessment Boundary: Assessment does not include molecular explanations.]

Disciplinary Core Idea(s):
LS2.A: Interdependent Relationships in Ecosystems The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plants parts and animals) and therefore operate as “decomposers.” Decomposition eventually restores (recycles) some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem. LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment.

Science & Engineering Practices: Developing and Using Models Develop a model to describe phenomena. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Science explanations describe the mechanisms for natural events.

Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.

DCI Connections:
Connections to other DCIs in fifth grade: 5.PS1.A; 5.ESS2.A Articulation across grade-levels: 2.PS1.A; 2.LS4.D; 4.ESS2.E; MS.LS1.C; MS.LS2.A; MS.LS2.B; MS.PS3.D

Standard Identifier: MS-LS3-2

Grade Range: 6–8
Disciplinary Core Idea: LS1.B: Growth and Development of Organisms, LS3.A: Inheritance of Traits, LS3.B: Variation of Traits
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: MS-LS3 Heredity: Inheritance and Variation of Traits

Performance Expectation: Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. [Clarification Statement: Emphasis is on using models such as Punnett squares, diagrams, and simulations to describe the cause and effect relationship of gene transmission from parent(s) to offspring and resulting genetic variation.]

Disciplinary Core Idea(s):
LS1.B: Growth and Development of Organisms Organisms reproduce, either sexually or asexually, and transfer their genetic information to their offspring. (secondary to MS-LS3-2) LS3.A: Inheritance of Traits Variations of inherited traits between parent and offspring arise from genetic differences that result from the subset of chromosomes (and therefore genes) inherited. LS3.B: Variation of Traits In sexually reproducing organisms, each parent contributes half of the genes acquired (at random) by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may differ from each other.

Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.

Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural systems.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.4: Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.4: Model with mathematics. 6.SP.5.a-d: Summarize numerical data sets in relation to their context.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 3.LS3.A; 3.LS3.B; HS.LS1.B; HS.LS3.A; HS.LS3.B

Standard Identifier: MS-LS4-4

Grade Range: 6–8
Disciplinary Core Idea: LS4.B: Natural Selection
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Life Science

Title: MS-LS4 Biological Evolution: Unity and Diversity

Performance Expectation: Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment. [Clarification Statement: Emphasis is on using simple probability statements and proportional reasoning to construct explanations.]

Disciplinary Core Idea(s):
LS4.B: Natural Selection Natural selection leads to the predominance of certain traits in a population, and the suppression of others.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct an explanation that includes qualitative or quantitative relationships between variables that describe phenomena.

Crosscutting Concepts: Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. WHST.6–8.2.a–f: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.6-8.9: Draw evidence from informational texts to support analysis, reflection, and research. SL.8.1.a–d: Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade 8 topics, texts, and issues, building on others’ ideas and expressing their own clearly. SL.8.4: Present claims and findings (e.g., argument, narrative, response to literature presentations), emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. a. Plan and present a narrative that: establishes a context and point of view, presents a logical sequence, uses narrative techniques (e.g., dialogue, pacing, description, sensory language), uses a variety of transitions, and provides a conclusion that reflects the experience. Mathematics 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 6.SP.5.a-d: Summarize numerical data sets in relation to their context. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities.

DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A; MS.LS3.A; MS.LS3.B Articulation across grade-bands: 3.LS3.B; 3.LS4.B; HS.LS2.A; HS.LS3.B; HS.LS4.B; HS.LS4.C

Standard Identifier: MS-LS4-5

Grade Range: 6–8
Disciplinary Core Idea: LS4.B: Natural Selection
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area: Life Science

Title: MS-LS4 Biological Evolution: Unity and Diversity

Performance Expectation: Gather and synthesize information about technologies that have changed the way humans influence the inheritance of desired traits in organisms. [Clarification Statement: Emphasis is on synthesizing information from reliable sources about the influence of humans on genetic outcomes in artificial selection (such as genetic modification, animal husbandry, gene therapy); and, on the impacts these technologies have on society as well as the technologies leading to these scientific discoveries.]

Disciplinary Core Idea(s):
LS4.B: Natural Selection In artificial selection, humans have the capacity to influence certain characteristics of organisms by selective breeding. One can choose desired parental traits determined by genes, which are then passed on to offspring.

Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Obtaining, evaluating, and communicating information in 6–8 builds on K–5 experiences and progresses to evaluating the merit and validity of ideas and methods. Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence.

Crosscutting Concepts: Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. WHST.6–8.8: Gather relevant information from multiple print and digital sources (primary and secondary), using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.LS3.B; HS.LS4.C

Standard Identifier: HS-ESS2-4

Grade Range: 9–12
Disciplinary Core Idea: ESS1.B: Earth and the Solar System, ESS2.A: Earth Materials and Systems, ESS2.D: Weather and Climate
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: HS-ESS2 Earth’s Systems

Performance Expectation: Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate. [Clarification Statement: Examples of the causes of climate change differ by timescale, over 1-10 years: large volcanic eruption, ocean circulation; 10-100s of years: changes in human activity, ocean circulation, solar output; 10-100s of thousands of years: changes to Earth's orbit and the orientation of its axis; and 10-100s of millions of years: long-term changes in atmospheric composition.] [Assessment Boundary: Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.]

Disciplinary Core Idea(s):
ESS1.B: Earth and the Solar System Cyclical changes in the shape of Earth’s orbit around the sun, together with changes in the tilt of the planet’s axis of rotation, both occurring over hundreds of thousands of years, have altered the intensity and distribution of sunlight falling on the earth. These phenomena cause a cycle of ice ages and other gradual climate changes. (secondary to HS-ESS2-4) ESS2.A: Earth Materials and Systems The geological record shows that changes to global and regional climate can be caused by interactions among changes in the sun’s energy output or Earth’s orbit, tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities. These changes can occur on a variety of time scales from sudden (e.g., volcanic ash clouds) to intermediate (ice ages) to very long-term tectonic cycles. ESS2.D: Weather and Climate The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space. Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate.

Science & Engineering Practices: Developing and Using Models Use a model to provide mechanistic accounts of phenomena. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science arguments are strengthened by multiple lines of evidence supporting a single explanation.

Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.A; HS.PS3.B; HS.LS2.C; HS.ESS1.C; HS.ESS3.C; HS.ESS3.D Articulation across grade-bands: MS.PS3.A; MS.PS3.B; MS.PS3.D; MS.PS4.B; MS.LS1.C; MS.LS2.B; MS.LS2.C; MS.ESS2.A; MS.ESS2.B; MS.ESS2.C; MS.ESS2.D; MS.ESS3.C; MS.ESS3.D

Standard Identifier: HS-LS2-5

Grade Range: 9–12
Disciplinary Core Idea: LS2.B: Cycles of Matter and Energy Transfer in Ecosystems, PS3.D: Energy in Chemical Processes
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: HS-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. [Clarification Statement: Examples of models could include simulations and mathematical models.] [Assessment Boundary: Assessment does not include the specific chemical steps of photosynthesis and respiration.]

Disciplinary Core Idea(s):
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged among the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes. PS3.D: Energy in Chemical Processes The main way that solar energy is captured and stored on Earth is through the complex chemical process known as photosynthesis. (secondary to HS-LS2-5)

Science & Engineering Practices: Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or components of a system.

Crosscutting Concepts: Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
N/A

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.B; HS.ESS2.D Articulation across grade-bands: MS.PS3.D; MS.LS1.C; MS.LS2.B; MS.ESS2.A

Showing 1 - 10 of 12 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881