Science (CA NGSS) Standards
Remove this criterion from the search
ESS1.A: The Universe and its Stars
Remove this criterion from the search
ETS1.C: Optimizing the Design Solution
Remove this criterion from the search
PS3.B: Conservation of Energy and Energy Transfer
Remove this criterion from the search
PS3.D: Energy in Chemical Processes
Results
Showing 1 - 2 of 2 Standards
Standard Identifier: 5-PS3-1
Grade:
5
Disciplinary Core Idea:
PS3.D: Energy in Chemical Processes, LS1.C: Organization for Matter and Energy Flow in Organisms
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Physical Science
Title: 5-PS3 Energy
Performance Expectation: Use models to describe that energy in animals’ food (used for body repair, growth, and motion, and to maintain body warmth) was once energy from the sun. [Clarification Statement: Examples of models could include diagrams, and flow charts.]
Disciplinary Core Idea(s):
PS3.D: Energy in Chemical Processes The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). LS1.C: Organization for Matter and Energy Flow in Organisms Food provides animals with the materials they need for body repair and growth and the energy they need to maintain body warmth and for motion. (secondary to 5-PS3-1)
Science & Engineering Practices: Developing and Using Models Use models to describe phenomena.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: K.LS1.C; 2.LS2.A; 4.PS3.A; 4.PS3.B; 4.PS3.D; MS.PS3.D; MS.PS4.B; MS.LS1.C; MS.LS2.B
Performance Expectation: Use models to describe that energy in animals’ food (used for body repair, growth, and motion, and to maintain body warmth) was once energy from the sun. [Clarification Statement: Examples of models could include diagrams, and flow charts.]
Disciplinary Core Idea(s):
PS3.D: Energy in Chemical Processes The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). LS1.C: Organization for Matter and Energy Flow in Organisms Food provides animals with the materials they need for body repair and growth and the energy they need to maintain body warmth and for motion. (secondary to 5-PS3-1)
Science & Engineering Practices: Developing and Using Models Use models to describe phenomena.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: K.LS1.C; 2.LS2.A; 4.PS3.A; 4.PS3.B; 4.PS3.D; MS.PS3.D; MS.PS4.B; MS.LS1.C; MS.LS2.B
Standard Identifier: HS-PS3-1
Grade Range:
9–12
Disciplinary Core Idea:
PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-5: Using Mathematics and Computational Thinking
Content Area:
Physical Science
Title: HS-PS3 Energy
Performance Expectation: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. [Clarification Statement: Emphasis is on explaining the meaning of mathematical expressions used in the model.] [Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system’s total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. PS3.B: Conservation of Energy and Energy Transfer Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior. The availability of energy limits what can occur in any system.
Science & Engineering Practices: Using Mathematics and Computational Thinking Create a computational model or simulation of a phenomenon, designed device, process, or system.
Crosscutting Concepts: Systems and System Models Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes the universe is a vast single system in which basic laws are consistent.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.B; HS.LS2.B; HS.ESS1.A; HS.ESS2.A Articulation across grade-bands: MS.PS3.A; MS.PS3.B; MS.ESS2.A
Performance Expectation: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. [Clarification Statement: Emphasis is on explaining the meaning of mathematical expressions used in the model.] [Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system’s total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. PS3.B: Conservation of Energy and Energy Transfer Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior. The availability of energy limits what can occur in any system.
Science & Engineering Practices: Using Mathematics and Computational Thinking Create a computational model or simulation of a phenomenon, designed device, process, or system.
Crosscutting Concepts: Systems and System Models Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes the universe is a vast single system in which basic laws are consistent.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.B; HS.LS2.B; HS.ESS1.A; HS.ESS2.A Articulation across grade-bands: MS.PS3.A; MS.PS3.B; MS.ESS2.A
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881