Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 1 - 10 of 16 Standards

Standard Identifier: 2-ESS2-1

Grade: 2
Disciplinary Core Idea: ESS2.A: Earth Materials and Systems, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Earth and Space Science

Title: 2-ESS2 Earth’s Systems

Performance Expectation: Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.* [Clarification Statement: Examples of solutions could include different designs of dikes and windbreaks to hold back wind and water, and different designs for using shrubs, grass, and trees to hold back the land.]

Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Wind and water can change the shape of the land. ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (secondary to 2-ESS2-1)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Compare multiple solutions to a problem.

Crosscutting Concepts: Stability and Change Things may change slowly or rapidly. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Developing and using technology has impacts on the natural world. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Scientists study the natural and material world.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RI.2.3: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. RI.2.9: Compare and contrast the most important points presented by two texts on the same topic. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.5: Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.

DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 4.ESS2.B; 5.ESS2.C

Standard Identifier: 3-LS4-2

Grade: 3
Disciplinary Core Idea: LS4.B: Natural Selection
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Life Science

Title: 3-LS4 Biological Evolution: Unity and Diversity

Performance Expectation: Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. [Clarification Statement: Examples of cause and effect relationships could be plants that have larger thorns than other plants may be less likely to be eaten by predators; and, animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.]

Disciplinary Core Idea(s):
LS4.B: Natural Selection Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Use evidence (e.g., observations, patterns) to construct an explanation.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RI.3.1.a–d: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2.a–d: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.2: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. SL.3.4: Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. a. Plan and deliver an informative/explanatory presentation on a topic that: organizes ideas around major points of information, follows a logical sequence, includes supporting details, uses clear and specific vocabulary, and provides a strong conclusion. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.

DCI Connections:
Connections to other DCIs in third grade: 3.LS4.C Articulation across grade-levels: MS.LS2.A; MS.LS3.B; MS.LS4.B

Standard Identifier: 5-ESS2-1

Grade: 5
Disciplinary Core Idea: ESS2.A: Earth Materials and Systems
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: 5-ESS2 Earth’s Systems

Performance Expectation: Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. [Clarification Statement: The geosphere, hydrosphere (including ice), atmosphere, and biosphere are each system is a part of the whole Earth System. Examples could include the influence of the ocean on ecosystems, landform shape, and climate; the influence of the atmosphere on landforms and ecosystems through weather and climate; and the influence of mountain ranges on winds and clouds in the atmosphere. The geosphere, hydrosphere, atmosphere, and biosphere are each a system.] [Assessment Boundary: Assessment is limited to the interactions of two systems at a time.]

Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Earth’s major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth’s surface materials and processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather.

Science & Engineering Practices: Developing and Using Models Develop a model using an example to describe a scientific principle.

Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.

California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 5.G.2: Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.

DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.ESS2.A; 3.ESS2.D; 4.ESS2.A; MS.ESS2.A; MS.ESS2.C; MS.ESS2.D

Standard Identifier: 5-LS2-1

Grade: 5
Disciplinary Core Idea: LS2.A: Interdependent Relationships in Ecosystems, LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: 5-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. [Clarification Statement: Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems, and the Earth.] [Assessment Boundary: Assessment does not include molecular explanations.]

Disciplinary Core Idea(s):
LS2.A: Interdependent Relationships in Ecosystems The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plants parts and animals) and therefore operate as “decomposers.” Decomposition eventually restores (recycles) some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem. LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment.

Science & Engineering Practices: Developing and Using Models Develop a model to describe phenomena. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Science explanations describe the mechanisms for natural events.

Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.

DCI Connections:
Connections to other DCIs in fifth grade: 5.PS1.A; 5.ESS2.A Articulation across grade-levels: 2.PS1.A; 2.LS4.D; 4.ESS2.E; MS.LS1.C; MS.LS2.A; MS.LS2.B; MS.PS3.D

Standard Identifier: MS-ESS2-1

Grade Range: 6–8
Disciplinary Core Idea: ESS2.A: Earth Materials and Systems
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: MS-ESS2 Earth’s Systems

Performance Expectation: Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process. [Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth’s materials.] [Assessment Boundary: Assessment does not include the identification and naming of minerals.]

Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems All Earth processes are the result of energy flowing and matter cycling within and among the planet’s systems. This energy is derived from the sun and Earth’s hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth’s materials and living organisms.

Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.

Crosscutting Concepts: Stability and Change Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and processes at different scales, including the atomic scale.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS1.B; MS.PS3.B; MS.LS2.B; MS.LS2.C; MS.ESS1.B; MS.ESS3.C Articulation across grade-bands: 4.PS3.B; 4.ESS2.A; 5.ESS2.A; HS.PS1.B; HS.PS3.B; HS.LS1.C; HS.LS2.B; HS.ESS2.A; HS.ESS2.C; HS.ESS2.E

Standard Identifier: MS-ESS2-2

Grade Range: 6–8
Disciplinary Core Idea: ESS2.A: Earth Materials and Systems, ESS2.C: The Roles of Water in Earth's Surface Processes
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Earth and Space Science

Title: MS-ESS2 Earth’s Systems

Performance Expectation: Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales. [Clarification Statement: Emphasis is on how processes change Earth’s surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.]

Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems The planet’s systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These interactions have shaped Earth’s history and will determine its future. ESS2.C: The Roles of Water in Earth’s Surface Processes Water’s movements—both on the land and underground—cause weathering and erosion, which change the land’s surface features and create underground formations.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe nature operate today as they did in the past and will continue to do so in the future.

Crosscutting Concepts: Scale Proportion and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. WHST.6-8.2.a-f: Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.2: Reason abstractly and quantitatively. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.B; MS.LS2.B Articulation across grade-bands: 4.ESS1.C; 4.ESS2.A; 4.ESS2.E; 5.ESS2.A; HS.PS3.D; HS.LS2.B; HS.ESS1.C; HS.ESS2.A; HS.ESS2.B; HS.ESS2.C; HS.ESS2.D; HS.ESS2.E; HS.ESS3.D

Standard Identifier: MS-LS2-3

Grade Range: 6–8
Disciplinary Core Idea: LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: MS-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. [Clarification Statement: Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system.] [Assessment Boundary: Assessment does not include the use of chemical reactions to describe the processes.]

Disciplinary Core Idea(s):
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the three groups interact within an ecosystem. Transfers of matter into and out of the physical environment occur at every level. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem.

Science & Engineering Practices: Developing and Using Models Develop a model to describe phenomena.

Crosscutting Concepts: Energy and Matter The transfer of energy can be tracked as energy flows through a natural system. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.B Articulation across grade-bands: 5.LS2.A; 5.LS2.B; HS.PS3.B; HS.LS1.C; HS.LS2.B; HS.ESS2.A

Standard Identifier: MS-LS4-4

Grade Range: 6–8
Disciplinary Core Idea: LS4.B: Natural Selection
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Life Science

Title: MS-LS4 Biological Evolution: Unity and Diversity

Performance Expectation: Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment. [Clarification Statement: Emphasis is on using simple probability statements and proportional reasoning to construct explanations.]

Disciplinary Core Idea(s):
LS4.B: Natural Selection Natural selection leads to the predominance of certain traits in a population, and the suppression of others.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct an explanation that includes qualitative or quantitative relationships between variables that describe phenomena.

Crosscutting Concepts: Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. WHST.6–8.2.a–f: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.6-8.9: Draw evidence from informational texts to support analysis, reflection, and research. SL.8.1.a–d: Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade 8 topics, texts, and issues, building on others’ ideas and expressing their own clearly. SL.8.4: Present claims and findings (e.g., argument, narrative, response to literature presentations), emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. a. Plan and present a narrative that: establishes a context and point of view, presents a logical sequence, uses narrative techniques (e.g., dialogue, pacing, description, sensory language), uses a variety of transitions, and provides a conclusion that reflects the experience. Mathematics 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 6.SP.5.a-d: Summarize numerical data sets in relation to their context. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities.

DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A; MS.LS3.A; MS.LS3.B Articulation across grade-bands: 3.LS3.B; 3.LS4.B; HS.LS2.A; HS.LS3.B; HS.LS4.B; HS.LS4.C

Standard Identifier: MS-PS3-2

Grade Range: 6–8
Disciplinary Core Idea: PS3.A: Definitions of Energy, PS3.C: Relationship between Energy and Forces
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: MS-PS3 Energy

Performance Expectation: Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. [Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate’s hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy A system of objects may also contain stored (potential) energy, depending on their relative positions. PS3.C: Relationship Between Energy and Forces When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object.

Science & Engineering Practices: Developing and Using Models Develop a model to describe unobservable mechanisms.

Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes, and outputs—and energy and matter flows within systems.

California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.PS2.B; HS.PS3.B; HS.PS3.C

Standard Identifier: HS-ESS2-1

Grade Range: 9–12
Disciplinary Core Idea: ESS2.A: Earth Materials and Systems, ESS2.B: Plate Tectonics and Large-Scale System Interactions
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: HS-ESS2 Earth’s Systems

Performance Expectation: Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. [Clarification Statement: Emphasis is on how the appearance of land features (such as mountains, valleys, and plateaus) and sea-floor features (such as trenches, ridges, and seamounts) are a result of both constructive forces (such as volcanism, tectonic uplift, and orogeny) and destructive mechanisms (such as weathering, mass wasting, and coastal erosion).] [Assessment Boundary: Assessment does not include memorization of the details of the formation of specific geographic features of Earth’s surface.]

Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. ESS2.B: Plate Tectonics and Large-Scale System Interactions Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. Plate movements are responsible for most continental and ocean-floor features and for the distribution of most rocks and minerals within Earth’s crust. (ESS2.B Grade 8 GBE)

Science & Engineering Practices: Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or between components of a system.

Crosscutting Concepts: Stability and Change Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS2.B Articulation across grade-bands: MS.PS2.B; MS.LS2.B; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B; MS.ESS2.C; MS.ESS2.D

Showing 1 - 10 of 16 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881