Science (CA NGSS) Standards
Remove this criterion from the search
ESS1.C: The History of Planet Earth
Remove this criterion from the search
ESS2.A: Earth Materials and Systems
Remove this criterion from the search
ESS2.D: Weather and Climate
Remove this criterion from the search
ESS3.B: Natural Hazards
Remove this criterion from the search
ETS1.C: Optimizing the Design Solution
Remove this criterion from the search
PS2.A: Forces and Motion
Results
Showing 1 - 10 of 11 Standards
Standard Identifier: K-2-ETS1-3
Grade:
K
Disciplinary Core Idea:
ETS1.C: Optimizing the Design Solution
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Engineering, Technology, and Applications of Science
Title: K–2-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
Disciplinary Core Idea(s):
ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to K-2-ETS1.C: Optimizing the Design Solution include: Second Grade: 2-ESS2-1 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C
Performance Expectation: Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
Disciplinary Core Idea(s):
ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to K-2-ETS1.C: Optimizing the Design Solution include: Second Grade: 2-ESS2-1 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C
Standard Identifier: K-ESS2-1
Grade:
K
Disciplinary Core Idea:
ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: K-ESS2 Earth’s Systems
Performance Expectation: Use and share observations of local weather conditions to describe patterns over time. [Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of quantitative observations limited to whole numbers and relative measures such as warmer/cooler.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time.
Science & Engineering Practices: Analyzing and Interpreting Data Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Scientists look for patterns and order when making observations about the world.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed, used to describe phenomena, and used as evidence.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.K.7: Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. K.CC.1-3: Know number names and the count sequence. K.MD.1: Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. K.MD.3: Classify objects into given categories; count the number of objects in each category and sort the categories by count. K.CC.4-5: Count to tell the number of objects.
DCI Connections:
Connections to other DCIs in kindergarten: N/A Articulation across grade-levels: 2.ESS2.A; 3.ESS2.D; 4.ESS2.A
Performance Expectation: Use and share observations of local weather conditions to describe patterns over time. [Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of quantitative observations limited to whole numbers and relative measures such as warmer/cooler.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time.
Science & Engineering Practices: Analyzing and Interpreting Data Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Scientists look for patterns and order when making observations about the world.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed, used to describe phenomena, and used as evidence.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.K.7: Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. K.CC.1-3: Know number names and the count sequence. K.MD.1: Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. K.MD.3: Classify objects into given categories; count the number of objects in each category and sort the categories by count. K.CC.4-5: Count to tell the number of objects.
DCI Connections:
Connections to other DCIs in kindergarten: N/A Articulation across grade-levels: 2.ESS2.A; 3.ESS2.D; 4.ESS2.A
Standard Identifier: K-PS2-2
Grade:
K
Disciplinary Core Idea:
PS2.A: Forces and Motion, PS2.B: Types of Interactions, ETS1.A: Defining and Delimiting Engineering Problems
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Physical Science
Title: K-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.* [Clarification Statement: Examples of problems requiring a solution could include having a marble or other object move a certain distance, follow a particular path, and knock down other objects. Examples of solutions could include tools such as a ramp to increase the speed of the object and a structure that would cause an object such as a marble or ball to turn.] [Assessment Boundary: Assessment does not include friction as a mechanism for change in speed.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion Pushes and pulls can have different strengths and directions. Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it. PS2.B: Types of Interactions When objects touch or collide, they push on one another and can change motion. ETS1.A: Defining and Delimiting Engineering Problems A situation that people want to change or create can be approached as a problem to be solved through engineering. Such problems may have many acceptable solutions. (secondary to K-PS2-2)
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: Cause and Effect Simple tests can be designed to gather evidence to support or refute student ideas about causes.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.K.1: With prompting and support, ask and answer questions about key details in a text. SL.K.3: Ask and answer questions in order to seek help, get information, or clarify something that is not understood.
DCI Connections:
Connections to other DCIs in kindergarten: K.ETS1.A; K.ETS1.B Articulation across grade-levels: 2.ETS1.B; 3.PS2.A; 4.ETS1.A
Performance Expectation: Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.* [Clarification Statement: Examples of problems requiring a solution could include having a marble or other object move a certain distance, follow a particular path, and knock down other objects. Examples of solutions could include tools such as a ramp to increase the speed of the object and a structure that would cause an object such as a marble or ball to turn.] [Assessment Boundary: Assessment does not include friction as a mechanism for change in speed.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion Pushes and pulls can have different strengths and directions. Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it. PS2.B: Types of Interactions When objects touch or collide, they push on one another and can change motion. ETS1.A: Defining and Delimiting Engineering Problems A situation that people want to change or create can be approached as a problem to be solved through engineering. Such problems may have many acceptable solutions. (secondary to K-PS2-2)
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: Cause and Effect Simple tests can be designed to gather evidence to support or refute student ideas about causes.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.K.1: With prompting and support, ask and answer questions about key details in a text. SL.K.3: Ask and answer questions in order to seek help, get information, or clarify something that is not understood.
DCI Connections:
Connections to other DCIs in kindergarten: K.ETS1.A; K.ETS1.B Articulation across grade-levels: 2.ETS1.B; 3.PS2.A; 4.ETS1.A
Standard Identifier: K-2-ETS1-3
Grade:
1
Disciplinary Core Idea:
ETS1.C: Optimizing the Design Solution
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Engineering, Technology, and Applications of Science
Title: K–2-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
Disciplinary Core Idea(s):
ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to K-2-ETS1.C: Optimizing the Design Solution include: Second Grade: 2-ESS2-1 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C
Performance Expectation: Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
Disciplinary Core Idea(s):
ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to K-2-ETS1.C: Optimizing the Design Solution include: Second Grade: 2-ESS2-1 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C
Standard Identifier: K-2-ETS1-3
Grade:
2
Disciplinary Core Idea:
ETS1.C: Optimizing the Design Solution
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Engineering, Technology, and Applications of Science
Title: K–2-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
Disciplinary Core Idea(s):
ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
DCI Connections:
Connections to K-2-ETS1.C: Optimizing the Design Solution include: Second Grade: 2-ESS2-1 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C
Performance Expectation: Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
Disciplinary Core Idea(s):
ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
DCI Connections:
Connections to K-2-ETS1.C: Optimizing the Design Solution include: Second Grade: 2-ESS2-1 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C
Standard Identifier: 3-ESS2-1
Grade:
3
Disciplinary Core Idea:
ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: 3-ESS2 Earth’s Systems
Performance Expectation: Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. [Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.] [Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.
Science & Engineering Practices: Analyzing and Interpreting Data Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.MD.2: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in bar graphs.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ESS2.D; 4.ESS2.A; 5.ESS2.A; MS.ESS2.C; MS.ESS2.D
Performance Expectation: Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. [Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.] [Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.
Science & Engineering Practices: Analyzing and Interpreting Data Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.MD.2: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in bar graphs.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ESS2.D; 4.ESS2.A; 5.ESS2.A; MS.ESS2.C; MS.ESS2.D
Standard Identifier: MS-ESS2-3
Grade Range:
6–8
Disciplinary Core Idea:
ESS1.C: The History of Planet Earth, ESS2.B: Plate Tectonics and Large-Scale System Interactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: MS-ESS2 Earth’s Systems
Performance Expectation: Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. [Clarification Statement: Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).] [Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Tectonic processes continually generate new ocean sea floor at ridges and destroy old sea floor at trenches. (HS.ESS1.C GBE) (secondary to MS-ESS2-3) ESS2.B: Plate Tectonics and Large-Scale System Interactions Maps of ancient land and water patterns, based on investigations of rocks and fossils, make clear how Earth’s plates have moved great distances, collided, and spread apart.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to provide evidence for phenomena. Connections to Nature of Science: Scientific Knowledge is Open to Revision in Light of New Evidence Science findings are frequently revised and/or reinterpreted based on new evidence.
Crosscutting Concepts: Patterns Patterns in rates of change and other numerical relationships can provide information about natural systems.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. Mathematics MP.2: Reason abstractly and quantitatively. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS4.A Articulation across grade-bands: 3.LS4.A; 3.ESS3.B; 4.ESS1.C; 4.ESS2.B; 4.ESS3.B; HS.LS4.A; HS.LS4.C; HS.ESS1.C; HS.ESS2.A; HS.ESS2.B
Performance Expectation: Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. [Clarification Statement: Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).] [Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Tectonic processes continually generate new ocean sea floor at ridges and destroy old sea floor at trenches. (HS.ESS1.C GBE) (secondary to MS-ESS2-3) ESS2.B: Plate Tectonics and Large-Scale System Interactions Maps of ancient land and water patterns, based on investigations of rocks and fossils, make clear how Earth’s plates have moved great distances, collided, and spread apart.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to provide evidence for phenomena. Connections to Nature of Science: Scientific Knowledge is Open to Revision in Light of New Evidence Science findings are frequently revised and/or reinterpreted based on new evidence.
Crosscutting Concepts: Patterns Patterns in rates of change and other numerical relationships can provide information about natural systems.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. Mathematics MP.2: Reason abstractly and quantitatively. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS4.A Articulation across grade-bands: 3.LS4.A; 3.ESS3.B; 4.ESS1.C; 4.ESS2.B; 4.ESS3.B; HS.LS4.A; HS.LS4.C; HS.ESS1.C; HS.ESS2.A; HS.ESS2.B
Standard Identifier: MS-ESS3-2
Grade Range:
6–8
Disciplinary Core Idea:
ESS3.B: Natural Hazards
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: MS-ESS3 Earth and Human Activity
Performance Expectation: Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. [Clarification Statement: Emphasis is on how some natural hazards, such as volcanic eruptions and severe weather, are preceded by phenomena that allow for reliable predictions, but others, such as earthquakes, occur suddenly and with no notice, and thus are not yet predictable. Examples of natural hazards can be taken from interior processes (such as earthquakes and volcanic eruptions), surface processes (such as mass wasting and tsunamis), or severe weather events (such as hurricanes, tornadoes, and floods). Examples of data can include the locations, magnitudes, and frequencies of the natural hazards. Examples of technologies can be global (such as satellite systems to monitor hurricanes or forest fires) or local (such as building basements in tornado-prone regions or reservoirs to mitigate droughts).]
Disciplinary Core Idea(s):
ESS3.B: Natural Hazards Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the locations and likelihoods of future events.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings.
Crosscutting Concepts: Patterns Graphs, charts, and images can be used to identify patterns in data. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Mathematics MP.2: Reason abstractly and quantitatively. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS3.C Articulation across grade-bands: 3.ESS3.B; 4.ESS3.B; HS.ESS2.B; HS.ESS2.D; HS.ESS3.B; HS.ESS3.D
Performance Expectation: Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. [Clarification Statement: Emphasis is on how some natural hazards, such as volcanic eruptions and severe weather, are preceded by phenomena that allow for reliable predictions, but others, such as earthquakes, occur suddenly and with no notice, and thus are not yet predictable. Examples of natural hazards can be taken from interior processes (such as earthquakes and volcanic eruptions), surface processes (such as mass wasting and tsunamis), or severe weather events (such as hurricanes, tornadoes, and floods). Examples of data can include the locations, magnitudes, and frequencies of the natural hazards. Examples of technologies can be global (such as satellite systems to monitor hurricanes or forest fires) or local (such as building basements in tornado-prone regions or reservoirs to mitigate droughts).]
Disciplinary Core Idea(s):
ESS3.B: Natural Hazards Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the locations and likelihoods of future events.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings.
Crosscutting Concepts: Patterns Graphs, charts, and images can be used to identify patterns in data. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Mathematics MP.2: Reason abstractly and quantitatively. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS3.C Articulation across grade-bands: 3.ESS3.B; 4.ESS3.B; HS.ESS2.B; HS.ESS2.D; HS.ESS3.B; HS.ESS3.D
Standard Identifier: MS-ETS1-3
Grade Range:
6–8
Disciplinary Core Idea:
ETS1.B: Developing Possible Solutions, ETS1.C: Optimizing the Design Solution
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Engineering, Technology, and Applications of Science
Title: MS-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors. ETS1.C: Optimizing the Design Solution Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process—that is, some of those characteristics may be incorporated into the new design.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of consideration and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6; MS-PS3-3 Life Science: MS-LS2-5 Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C; HS.ETS1.B; HS.ETS1.C
Performance Expectation: Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors. ETS1.C: Optimizing the Design Solution Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process—that is, some of those characteristics may be incorporated into the new design.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of consideration and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6; MS-PS3-3 Life Science: MS-LS2-5 Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C; HS.ETS1.B; HS.ETS1.C
Standard Identifier: HS-ESS2-2
Grade Range:
9–12
Disciplinary Core Idea:
ESS2.A: Earth Materials and Systems, ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: HS-ESS2 Earth’s Systems
Performance Expectation: Analyze geoscience data to make the claim that one change to Earth’s surface can create feedbacks that cause changes to other Earth systems. [Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice, which reduces the amount of sunlight reflected from Earth’s surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. ESS2.D: Weather and Climate The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution.
Crosscutting Concepts: Stability and Change Feedback (negative or positive) can stabilize or destabilize a system. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.2: Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B; HS.PS4.B; HS.LS2.B; HS.LS2.C; HS.LS4.D; HS.ESS3.C; HS.ESS3.D Articulation across grade-bands: MS.PS3.D; MS.PS4.B; MS.LS2.B; MS.LS2.C; MS.LS4.C; MS.ESS2.A; MS.ESS2.B; MS.ESS2.C; MS.ESS2.D; MS.ESS3.D
Performance Expectation: Analyze geoscience data to make the claim that one change to Earth’s surface can create feedbacks that cause changes to other Earth systems. [Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice, which reduces the amount of sunlight reflected from Earth’s surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. ESS2.D: Weather and Climate The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution.
Crosscutting Concepts: Stability and Change Feedback (negative or positive) can stabilize or destabilize a system. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.2: Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B; HS.PS4.B; HS.LS2.B; HS.LS2.C; HS.LS4.D; HS.ESS3.C; HS.ESS3.D Articulation across grade-bands: MS.PS3.D; MS.PS4.B; MS.LS2.B; MS.LS2.C; MS.LS4.C; MS.ESS2.A; MS.ESS2.B; MS.ESS2.C; MS.ESS2.D; MS.ESS3.D
Showing 1 - 10 of 11 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881