Science (CA NGSS) Standards
Remove this criterion from the search
ESS1.C: The History of Planet Earth
Remove this criterion from the search
ESS2.C: The Roles of Water in Earth's Surface Processes
Remove this criterion from the search
ESS3.A: Natural Resources
Remove this criterion from the search
LS1.A: Structure and Function
Remove this criterion from the search
LS1.B: Growth and Development of Organisms
Remove this criterion from the search
PS4.C: Information Technologies and Instrumentation
Results
Showing 21 - 30 of 37 Standards
Standard Identifier: MS-LS1-2
Grade Range:
6–8
Disciplinary Core Idea:
LS1.A: Structure and Function
Cross Cutting Concept:
CCC-6: Structure and Function
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Life Science
Title: MS-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Develop and use a model to describe the function of a cell as a whole and ways the parts of cells contribute to the function. [Clarification Statement: Emphasis is on the cell functioning as a whole system and the primary role of identified parts of the cell, specifically the nucleus, chloroplasts, mitochondria, cell membrane, and cell wall.] [Assessment Boundary: Assessment of organelle structure/function relationships is limited to the cell wall and cell membrane. Assessment of the function of the other organelles is limited to their relationship to the whole cell. Assessment does not include the biochemical function of cells or cell parts.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function Within cells, special structures are responsible for particular functions, and the cell membrane forms the boundary that controls what enters and leaves the cell.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Structure and Function Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the relationships among its parts, therefore complex natural structures/systems can be analyzed to determine how they function.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS3.A Articulation across grade-bands: 4.LS1.A; HS.LS1.A
Performance Expectation: Develop and use a model to describe the function of a cell as a whole and ways the parts of cells contribute to the function. [Clarification Statement: Emphasis is on the cell functioning as a whole system and the primary role of identified parts of the cell, specifically the nucleus, chloroplasts, mitochondria, cell membrane, and cell wall.] [Assessment Boundary: Assessment of organelle structure/function relationships is limited to the cell wall and cell membrane. Assessment of the function of the other organelles is limited to their relationship to the whole cell. Assessment does not include the biochemical function of cells or cell parts.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function Within cells, special structures are responsible for particular functions, and the cell membrane forms the boundary that controls what enters and leaves the cell.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Structure and Function Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the relationships among its parts, therefore complex natural structures/systems can be analyzed to determine how they function.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS3.A Articulation across grade-bands: 4.LS1.A; HS.LS1.A
Standard Identifier: MS-LS1-3
Grade Range:
6–8
Disciplinary Core Idea:
LS1.A: Structure and Function
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: MS-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. [Clarification Statement: Emphasis is on the conceptual understanding that cells form tissues and tissues form organs specialized for particular body functions. Examples could include the interaction of subsystems within a system and the normal functioning of those systems.] [Assessment Boundary: Assessment does not include the mechanism of one body system independent of others. Assessment is limited to the circulatory, excretory, digestive, respiratory, muscular, and nervous systems.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions.
Science & Engineering Practices: Engaging in Argument from Evidence Use an oral and written argument supported by evidence to support or refute an explanation or a model for a phenomenon.
Crosscutting Concepts: Systems and System Models Systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. Connections to Nature of Science: Science is a Human Endeavor Scientists and engineers are guided by habits of mind such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RI.6.8: Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.LS1.A
Performance Expectation: Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. [Clarification Statement: Emphasis is on the conceptual understanding that cells form tissues and tissues form organs specialized for particular body functions. Examples could include the interaction of subsystems within a system and the normal functioning of those systems.] [Assessment Boundary: Assessment does not include the mechanism of one body system independent of others. Assessment is limited to the circulatory, excretory, digestive, respiratory, muscular, and nervous systems.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions.
Science & Engineering Practices: Engaging in Argument from Evidence Use an oral and written argument supported by evidence to support or refute an explanation or a model for a phenomenon.
Crosscutting Concepts: Systems and System Models Systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. Connections to Nature of Science: Science is a Human Endeavor Scientists and engineers are guided by habits of mind such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RI.6.8: Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.LS1.A
Standard Identifier: MS-LS1-4
Grade Range:
6–8
Disciplinary Core Idea:
LS1.B: Growth and Development of Organisms
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: MS-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. [Clarification Statement: Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds, and creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.]
Disciplinary Core Idea(s):
LS1.B: Growth and Development of Organisms Animals engage in characteristic behaviors that increase the odds of reproduction. Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction.
Science & Engineering Practices: Engaging in Argument from Evidence Use an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.
Crosscutting Concepts: Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RI.6.8: Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A Articulation across grade-bands: 3.LS1.B; HS.LS2.A; HS.LS2.D
Performance Expectation: Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. [Clarification Statement: Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds, and creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.]
Disciplinary Core Idea(s):
LS1.B: Growth and Development of Organisms Animals engage in characteristic behaviors that increase the odds of reproduction. Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction.
Science & Engineering Practices: Engaging in Argument from Evidence Use an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.
Crosscutting Concepts: Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RI.6.8: Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A Articulation across grade-bands: 3.LS1.B; HS.LS2.A; HS.LS2.D
Standard Identifier: MS-LS1-5
Grade Range:
6–8
Disciplinary Core Idea:
LS1.B: Growth and Development of Organisms
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Life Science
Title: MS-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. [Clarification Statement: Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include large breed cattle and species of grass affecting growth of organisms. Examples of evidence could include drought decreasing plant growth, fertilizer increasing plant growth, different varieties of plant seeds growing at different rates in different conditions, and fish growing larger in large ponds than they do in small ponds.] [Assessment Boundary: Assessment does not include genetic mechanisms, gene regulation, or biochemical processes.]
Disciplinary Core Idea(s):
LS1.B: Growth and Development of Organisms Genetic factors as well as local conditions affect the growth of the adult plant.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.2: Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. WHST.6–8.2.a–f: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.6–8.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics 6.SP.2: Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape. 6.SP.4: Display numerical data in plots on a number line, including dot plots, histograms, and box plots.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A Articulation across grade-bands: 3.LS1.B; 3.LS3.A; HS.LS2.A
Performance Expectation: Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. [Clarification Statement: Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include large breed cattle and species of grass affecting growth of organisms. Examples of evidence could include drought decreasing plant growth, fertilizer increasing plant growth, different varieties of plant seeds growing at different rates in different conditions, and fish growing larger in large ponds than they do in small ponds.] [Assessment Boundary: Assessment does not include genetic mechanisms, gene regulation, or biochemical processes.]
Disciplinary Core Idea(s):
LS1.B: Growth and Development of Organisms Genetic factors as well as local conditions affect the growth of the adult plant.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.2: Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. WHST.6–8.2.a–f: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.6–8.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics 6.SP.2: Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape. 6.SP.4: Display numerical data in plots on a number line, including dot plots, histograms, and box plots.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A Articulation across grade-bands: 3.LS1.B; 3.LS3.A; HS.LS2.A
Standard Identifier: MS-LS3-2
Grade Range:
6–8
Disciplinary Core Idea:
LS1.B: Growth and Development of Organisms, LS3.A: Inheritance of Traits, LS3.B: Variation of Traits
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Life Science
Title: MS-LS3 Heredity: Inheritance and Variation of Traits
Performance Expectation: Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. [Clarification Statement: Emphasis is on using models such as Punnett squares, diagrams, and simulations to describe the cause and effect relationship of gene transmission from parent(s) to offspring and resulting genetic variation.]
Disciplinary Core Idea(s):
LS1.B: Growth and Development of Organisms Organisms reproduce, either sexually or asexually, and transfer their genetic information to their offspring. (secondary to MS-LS3-2) LS3.A: Inheritance of Traits Variations of inherited traits between parent and offspring arise from genetic differences that result from the subset of chromosomes (and therefore genes) inherited. LS3.B: Variation of Traits In sexually reproducing organisms, each parent contributes half of the genes acquired (at random) by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may differ from each other.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.4: Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.4: Model with mathematics. 6.SP.5.a-d: Summarize numerical data sets in relation to their context.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 3.LS3.A; 3.LS3.B; HS.LS1.B; HS.LS3.A; HS.LS3.B
Performance Expectation: Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. [Clarification Statement: Emphasis is on using models such as Punnett squares, diagrams, and simulations to describe the cause and effect relationship of gene transmission from parent(s) to offspring and resulting genetic variation.]
Disciplinary Core Idea(s):
LS1.B: Growth and Development of Organisms Organisms reproduce, either sexually or asexually, and transfer their genetic information to their offspring. (secondary to MS-LS3-2) LS3.A: Inheritance of Traits Variations of inherited traits between parent and offspring arise from genetic differences that result from the subset of chromosomes (and therefore genes) inherited. LS3.B: Variation of Traits In sexually reproducing organisms, each parent contributes half of the genes acquired (at random) by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may differ from each other.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.4: Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.4: Model with mathematics. 6.SP.5.a-d: Summarize numerical data sets in relation to their context.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 3.LS3.A; 3.LS3.B; HS.LS1.B; HS.LS3.A; HS.LS3.B
Standard Identifier: MS-PS4-3
Grade Range:
6–8
Disciplinary Core Idea:
PS4.C: Information Technologies and Instrumentation
Cross Cutting Concept:
CCC-6: Structure and Function
Science & Engineering Practice:
SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area:
Physical Science
Title: MS-PS4 Waves and Their Applications in Technologies for Information Transfer
Performance Expectation: Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. [Clarification Statement: Emphasis is on a basic understanding that waves can be used for communication purposes. Examples could include using fiber optic cable to transmit light pulses, radio wave pulses in wifi devices, and conversion of stored binary patterns to make sound or text on a computer screen.] [Assessment Boundary: Assessment does not include binary counting. Assessment does not include the specific mechanism of any given device.]
Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation Digitized signals (sent as wave pulses) are a more reliable way to encode and transmit information.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Integrate qualitative scientific and technical information in written text with that contained in media and visual displays to clarify claims and findings.
Crosscutting Concepts: Structure and Function Structures can be designed to serve particular functions. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World Technologies extend the measurement, exploration, modeling, and computational capacity of scientific investigations. Connections to Nature of Science: Science is a Human Endeavor Advances in technology influence the progress of science and science has influenced advances in technology.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.2: Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. WHST.6-8.9: Draw evidence from informational texts to support analysis, reflection, and research.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 4.PS4.C; HS.PS4.A; HS.PS4.C
Performance Expectation: Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. [Clarification Statement: Emphasis is on a basic understanding that waves can be used for communication purposes. Examples could include using fiber optic cable to transmit light pulses, radio wave pulses in wifi devices, and conversion of stored binary patterns to make sound or text on a computer screen.] [Assessment Boundary: Assessment does not include binary counting. Assessment does not include the specific mechanism of any given device.]
Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation Digitized signals (sent as wave pulses) are a more reliable way to encode and transmit information.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Integrate qualitative scientific and technical information in written text with that contained in media and visual displays to clarify claims and findings.
Crosscutting Concepts: Structure and Function Structures can be designed to serve particular functions. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World Technologies extend the measurement, exploration, modeling, and computational capacity of scientific investigations. Connections to Nature of Science: Science is a Human Endeavor Advances in technology influence the progress of science and science has influenced advances in technology.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.2: Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. WHST.6-8.9: Draw evidence from informational texts to support analysis, reflection, and research.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 4.PS4.C; HS.PS4.A; HS.PS4.C
Standard Identifier: HS-ESS1-5
Grade Range:
9–12
Disciplinary Core Idea:
ESS1.C: The History of Planet Earth, ESS2.B: Plate Tectonics and Large-Scale System Interactions, PS1.C: Nuclear Processes
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Earth and Space Science
Title: HS-ESS1 Earth’s Place in the Universe
Performance Expectation: Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks. [Clarification Statement: Emphasis is on the ability of plate tectonics to explain the ages of crustal rocks. Examples include evidence of the ages oceanic crust increasing with distance from mid-ocean ridges (a result of plate spreading) and the ages of North American continental crust decreasing with distance away from a central ancient core of the continental plate (a result of past plate interactions).]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Continental rocks, which can be older than 4 billion years, are generally much older than the rocks of the ocean floor, which are less than 200 million years old. ESS2.B: Plate Tectonics and Large-Scale System Interactions Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. (ESS2.B Grade 8 GBE) (secondary to HS-ESS1-5) PS1.C: Nuclear Processes Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (secondary to HS-ESS1-5)
Science & Engineering Practices: Engaging in Argument from Evidence Evaluate evidence behind currently accepted explanations or solutions to determine the merits of arguments.
Crosscutting Concepts: Patterns Empirical evidence is needed to identify patterns.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.8: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. WHST.9-10.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B; HS.ESS2.A Articulation across grade-bands: MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Performance Expectation: Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks. [Clarification Statement: Emphasis is on the ability of plate tectonics to explain the ages of crustal rocks. Examples include evidence of the ages oceanic crust increasing with distance from mid-ocean ridges (a result of plate spreading) and the ages of North American continental crust decreasing with distance away from a central ancient core of the continental plate (a result of past plate interactions).]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Continental rocks, which can be older than 4 billion years, are generally much older than the rocks of the ocean floor, which are less than 200 million years old. ESS2.B: Plate Tectonics and Large-Scale System Interactions Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. (ESS2.B Grade 8 GBE) (secondary to HS-ESS1-5) PS1.C: Nuclear Processes Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (secondary to HS-ESS1-5)
Science & Engineering Practices: Engaging in Argument from Evidence Evaluate evidence behind currently accepted explanations or solutions to determine the merits of arguments.
Crosscutting Concepts: Patterns Empirical evidence is needed to identify patterns.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.8: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. WHST.9-10.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B; HS.ESS2.A Articulation across grade-bands: MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Standard Identifier: HS-ESS1-6
Grade Range:
9–12
Disciplinary Core Idea:
ESS1.C: The History of Planet Earth, PS1.C: Nuclear Processes
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: HS-ESS1 Earth’s Place in the Universe
Performance Expectation: Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth’s formation and early history. [Clarification Statement: Emphasis is on using available evidence within the solar system to reconstruct the early history of Earth, which formed along with the rest of the solar system 4.6 billion years ago. Examples of evidence include the absolute ages of ancient materials (obtained by radiometric dating of meteorites, moon rocks, and Earth’s oldest minerals), the sizes and compositions of solar system objects, and the impact cratering record of planetary surfaces.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Although active geologic processes, such as plate tectonics and erosion, have destroyed or altered most of the very early rock record on Earth, other objects in the solar system, such as lunar rocks, asteroids, and meteorites, have changed little over billions of years. Studying these objects can provide information about Earth’s formation and early history. PS1.C: Nuclear Processes Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (secondary to HS-ESS1-6)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific reasoning to link evidence to the claims to assess the extent to which the reasoning and data support the explanation or conclusion. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence. Models, mechanisms, and explanations collectively serve as tools in the development of a scientific theory.
Crosscutting Concepts: Stability and Change Much of science deals with constructing explanations of how things change and how they remain stable.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.8: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. WHST.9-12.1: Write arguments focused on discipline-specific content. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems. F-IF.5: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. S-ID.6.a-c: Represent data on two quantitative variables on a scatter plot, and describe how those variables are related.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS2.A; HS.PS2.B Articulation across grade-bands: MS.PS2.B; MS.ESS1.B; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Performance Expectation: Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth’s formation and early history. [Clarification Statement: Emphasis is on using available evidence within the solar system to reconstruct the early history of Earth, which formed along with the rest of the solar system 4.6 billion years ago. Examples of evidence include the absolute ages of ancient materials (obtained by radiometric dating of meteorites, moon rocks, and Earth’s oldest minerals), the sizes and compositions of solar system objects, and the impact cratering record of planetary surfaces.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Although active geologic processes, such as plate tectonics and erosion, have destroyed or altered most of the very early rock record on Earth, other objects in the solar system, such as lunar rocks, asteroids, and meteorites, have changed little over billions of years. Studying these objects can provide information about Earth’s formation and early history. PS1.C: Nuclear Processes Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (secondary to HS-ESS1-6)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific reasoning to link evidence to the claims to assess the extent to which the reasoning and data support the explanation or conclusion. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence. Models, mechanisms, and explanations collectively serve as tools in the development of a scientific theory.
Crosscutting Concepts: Stability and Change Much of science deals with constructing explanations of how things change and how they remain stable.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.8: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. WHST.9-12.1: Write arguments focused on discipline-specific content. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems. F-IF.5: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. S-ID.6.a-c: Represent data on two quantitative variables on a scatter plot, and describe how those variables are related.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS2.A; HS.PS2.B Articulation across grade-bands: MS.PS2.B; MS.ESS1.B; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Standard Identifier: HS-ESS2-5
Grade Range:
9–12
Disciplinary Core Idea:
ESS2.C: The Roles of Water in Earth's Surface Processes
Cross Cutting Concept:
CCC-6: Structure and Function
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Earth and Space Science
Title: HS-ESS2 Earth’s Systems
Performance Expectation: Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. [Clarification Statement: Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).]
Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes The abundance of liquid water on Earth’s surface and its unique combination of physical and chemical properties are central to the planet’s dynamics. These properties include water’s exceptional capacity to absorb, store, and release large amounts of energy, transmit sunlight, expand upon freezing, dissolve and transport materials, and lower the viscosities and melting points of rocks.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.
Crosscutting Concepts: Structure and Function The functions and properties of natural and designed objects and systems can be inferred from their overall structure, the way their components are shaped and used, and the molecular substructures of its various materials.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.B; HS.PS3.B; HS.ESS3.C Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS2.A; MS.ESS2.C; MS.ESS2.D
Performance Expectation: Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. [Clarification Statement: Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).]
Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes The abundance of liquid water on Earth’s surface and its unique combination of physical and chemical properties are central to the planet’s dynamics. These properties include water’s exceptional capacity to absorb, store, and release large amounts of energy, transmit sunlight, expand upon freezing, dissolve and transport materials, and lower the viscosities and melting points of rocks.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.
Crosscutting Concepts: Structure and Function The functions and properties of natural and designed objects and systems can be inferred from their overall structure, the way their components are shaped and used, and the molecular substructures of its various materials.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.B; HS.PS3.B; HS.ESS3.C Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS2.A; MS.ESS2.C; MS.ESS2.D
Standard Identifier: HS-ESS3-1
Grade Range:
9–12
Disciplinary Core Idea:
ESS3.A: Natural Resources, ESS3.B: Natural Hazards
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: HS-ESS3 Earth and Human Activity
Performance Expectation: Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. [Clarification Statement: Examples of key natural resources include access to fresh water (such as rivers, lakes, and groundwater), regions of fertile soils such as river deltas, and high concentrations of minerals and fossil fuels. Examples of natural hazards can be from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting and soil erosion), and severe weather (such as hurricanes, floods, and droughts). Examples of the results of changes in climate that can affect populations or drive mass migrations include changes to sea level, regional patterns of temperature and precipitation, and the types of crops and livestock that can be raised.]
Disciplinary Core Idea(s):
ESS3.A: Natural Resources Resource availability has guided the development of human society. ESS3.B: Natural Hazards Natural hazards and other geologic events have shaped the course of human history; [they] have significantly altered the sizes of human populations and have driven human migrations.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Modern civilization depends on major technological systems.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-10.2.a-f: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2.a-e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS2.A; MS.LS4.D; MS.ESS2.A; MS.ESS3.A; MS.ESS3.B
Performance Expectation: Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. [Clarification Statement: Examples of key natural resources include access to fresh water (such as rivers, lakes, and groundwater), regions of fertile soils such as river deltas, and high concentrations of minerals and fossil fuels. Examples of natural hazards can be from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting and soil erosion), and severe weather (such as hurricanes, floods, and droughts). Examples of the results of changes in climate that can affect populations or drive mass migrations include changes to sea level, regional patterns of temperature and precipitation, and the types of crops and livestock that can be raised.]
Disciplinary Core Idea(s):
ESS3.A: Natural Resources Resource availability has guided the development of human society. ESS3.B: Natural Hazards Natural hazards and other geologic events have shaped the course of human history; [they] have significantly altered the sizes of human populations and have driven human migrations.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Modern civilization depends on major technological systems.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-10.2.a-f: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2.a-e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS2.A; MS.LS4.D; MS.ESS2.A; MS.ESS3.A; MS.ESS3.B
Showing 21 - 30 of 37 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881