Science (CA NGSS) Standards
Remove this criterion from the search
ESS2.B: Plate Tectonics and Large-Scale System Interactions
Remove this criterion from the search
ESS2.D: Weather and Climate
Remove this criterion from the search
ESS3.D: Global Climate Change
Remove this criterion from the search
LS4.B: Natural Selection
Remove this criterion from the search
PS3.A: Definitions of Energy
Remove this criterion from the search
PS4.A: Wave Properties
Results
Showing 1 - 10 of 43 Standards
Standard Identifier: K-ESS2-1
Grade:
K
Disciplinary Core Idea:
ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: K-ESS2 Earth’s Systems
Performance Expectation: Use and share observations of local weather conditions to describe patterns over time. [Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of quantitative observations limited to whole numbers and relative measures such as warmer/cooler.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time.
Science & Engineering Practices: Analyzing and Interpreting Data Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Scientists look for patterns and order when making observations about the world.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed, used to describe phenomena, and used as evidence.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.K.7: Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. K.CC.1-3: Know number names and the count sequence. K.MD.1: Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. K.MD.3: Classify objects into given categories; count the number of objects in each category and sort the categories by count. K.CC.4-5: Count to tell the number of objects.
DCI Connections:
Connections to other DCIs in kindergarten: N/A Articulation across grade-levels: 2.ESS2.A; 3.ESS2.D; 4.ESS2.A
Performance Expectation: Use and share observations of local weather conditions to describe patterns over time. [Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of quantitative observations limited to whole numbers and relative measures such as warmer/cooler.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time.
Science & Engineering Practices: Analyzing and Interpreting Data Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Scientists look for patterns and order when making observations about the world.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed, used to describe phenomena, and used as evidence.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.K.7: Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. K.CC.1-3: Know number names and the count sequence. K.MD.1: Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. K.MD.3: Classify objects into given categories; count the number of objects in each category and sort the categories by count. K.CC.4-5: Count to tell the number of objects.
DCI Connections:
Connections to other DCIs in kindergarten: N/A Articulation across grade-levels: 2.ESS2.A; 3.ESS2.D; 4.ESS2.A
Standard Identifier: 1-PS4-1
Grade:
1
Disciplinary Core Idea:
PS4.A: Wave Properties
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Physical Science
Title: 1-PS4 Waves and their Applications in Technologies for Information Transfer
Performance Expectation: Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate. [Clarification Statement: Examples of vibrating materials that make sound could include tuning forks and plucking a stretched string. Examples of how sound can make matter vibrate could include holding a piece of paper near a speaker making sound and holding an object near a vibrating tuning fork.]
Disciplinary Core Idea(s):
PS4.A: Wave Properties Sound can make matter vibrate, and vibrating matter can make sound.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct investigations collaboratively to produce data to serve as the basis for evidence to answer a question. Connections to Nature of Science: Scientific Investigations Use a Variety of Methods Science investigations begin with a question. Scientists use different ways to study the world.
Crosscutting Concepts: Cause and Effect Simple tests can be designed to gather evidence to support or refute student ideas about causes.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.1.7: Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). W.1.8: With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. SL.1.1.a–c: Participate in collaborative conversations with diverse partners about grade 1 topics and texts with peers and adults in small and larger groups.
DCI Connections:
Connections to other DCIs in first grade: N/A Articulation across grade-levels: N/A
Performance Expectation: Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate. [Clarification Statement: Examples of vibrating materials that make sound could include tuning forks and plucking a stretched string. Examples of how sound can make matter vibrate could include holding a piece of paper near a speaker making sound and holding an object near a vibrating tuning fork.]
Disciplinary Core Idea(s):
PS4.A: Wave Properties Sound can make matter vibrate, and vibrating matter can make sound.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct investigations collaboratively to produce data to serve as the basis for evidence to answer a question. Connections to Nature of Science: Scientific Investigations Use a Variety of Methods Science investigations begin with a question. Scientists use different ways to study the world.
Crosscutting Concepts: Cause and Effect Simple tests can be designed to gather evidence to support or refute student ideas about causes.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.1.7: Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). W.1.8: With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. SL.1.1.a–c: Participate in collaborative conversations with diverse partners about grade 1 topics and texts with peers and adults in small and larger groups.
DCI Connections:
Connections to other DCIs in first grade: N/A Articulation across grade-levels: N/A
Standard Identifier: 2-ESS2-2
Grade:
2
Disciplinary Core Idea:
ESS2.B: Plate Tectonics and Large-Scale System Interactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Earth and Space Science
Title: 2-ESS2 Earth’s Systems
Performance Expectation: Develop a model to represent the shapes and kinds of land and bodies of water in an area. [Assessment Boundary: Assessment does not include quantitative scaling in models.]
Disciplinary Core Idea(s):
ESS2.B: Plate Tectonics and Large-Scale System Interactions Maps show where things are located. One can map the shapes and kinds of land and water in any area.
Science & Engineering Practices: Developing and Using Models Develop a model to represent patterns in the natural world.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.2.5: Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 2.NBT.3: Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 4.ESS2.B; 5.ESS2.C
Performance Expectation: Develop a model to represent the shapes and kinds of land and bodies of water in an area. [Assessment Boundary: Assessment does not include quantitative scaling in models.]
Disciplinary Core Idea(s):
ESS2.B: Plate Tectonics and Large-Scale System Interactions Maps show where things are located. One can map the shapes and kinds of land and water in any area.
Science & Engineering Practices: Developing and Using Models Develop a model to represent patterns in the natural world.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.2.5: Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 2.NBT.3: Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 4.ESS2.B; 5.ESS2.C
Standard Identifier: 3-ESS2-1
Grade:
3
Disciplinary Core Idea:
ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: 3-ESS2 Earth’s Systems
Performance Expectation: Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. [Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.] [Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.
Science & Engineering Practices: Analyzing and Interpreting Data Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.MD.2: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in bar graphs.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ESS2.D; 4.ESS2.A; 5.ESS2.A; MS.ESS2.C; MS.ESS2.D
Performance Expectation: Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. [Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.] [Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.
Science & Engineering Practices: Analyzing and Interpreting Data Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.MD.2: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in bar graphs.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ESS2.D; 4.ESS2.A; 5.ESS2.A; MS.ESS2.C; MS.ESS2.D
Standard Identifier: 3-ESS2-2
Grade:
3
Disciplinary Core Idea:
ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area:
Earth and Space Science
Title: 3-ESS2 Earth’s Systems
Performance Expectation: Obtain and combine information to describe climates in different regions of the world.
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Obtain and combine information from books and other reliable media to explain phenomena.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.9: Compare and contrast the most important points and key details presented in two texts on the same topic. W.3.8: Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: MS.ESS2.C; MS.ESS2.D
Performance Expectation: Obtain and combine information to describe climates in different regions of the world.
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Obtain and combine information from books and other reliable media to explain phenomena.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.9: Compare and contrast the most important points and key details presented in two texts on the same topic. W.3.8: Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: MS.ESS2.C; MS.ESS2.D
Standard Identifier: 3-LS4-2
Grade:
3
Disciplinary Core Idea:
LS4.B: Natural Selection
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Life Science
Title: 3-LS4 Biological Evolution: Unity and Diversity
Performance Expectation: Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. [Clarification Statement: Examples of cause and effect relationships could be plants that have larger thorns than other plants may be less likely to be eaten by predators; and, animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.]
Disciplinary Core Idea(s):
LS4.B: Natural Selection Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Use evidence (e.g., observations, patterns) to construct an explanation.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.3.1.a–d: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2.a–d: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.2: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. SL.3.4: Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. a. Plan and deliver an informative/explanatory presentation on a topic that: organizes ideas around major points of information, follows a logical sequence, includes supporting details, uses clear and specific vocabulary, and provides a strong conclusion. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.
DCI Connections:
Connections to other DCIs in third grade: 3.LS4.C Articulation across grade-levels: MS.LS2.A; MS.LS3.B; MS.LS4.B
Performance Expectation: Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. [Clarification Statement: Examples of cause and effect relationships could be plants that have larger thorns than other plants may be less likely to be eaten by predators; and, animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.]
Disciplinary Core Idea(s):
LS4.B: Natural Selection Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Use evidence (e.g., observations, patterns) to construct an explanation.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.3.1.a–d: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2.a–d: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.2: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. SL.3.4: Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. a. Plan and deliver an informative/explanatory presentation on a topic that: organizes ideas around major points of information, follows a logical sequence, includes supporting details, uses clear and specific vocabulary, and provides a strong conclusion. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.
DCI Connections:
Connections to other DCIs in third grade: 3.LS4.C Articulation across grade-levels: MS.LS2.A; MS.LS3.B; MS.LS4.B
Standard Identifier: 4-ESS2-2
Grade:
4
Disciplinary Core Idea:
ESS2.B: Plate Tectonics and Large-Scale System Interactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: 4-ESS2 Earth’s Systems
Performance Expectation: Analyze and interpret data from maps to describe patterns of Earth’s features. [Clarification Statement: Maps can include topographic maps of Earth’s land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.]
Disciplinary Core Idea(s):
ESS2.B: Plate Tectonics and Large-Scale System Interactions The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of Earth.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to make sense of phenomena using logical reasoning.
Crosscutting Concepts: Patterns Patterns can be used as evidence to support an explanation.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.7: Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears. Mathematics 4.MD.2: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS2.B; 2.ESS2.C; 5.ESS2.C; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Performance Expectation: Analyze and interpret data from maps to describe patterns of Earth’s features. [Clarification Statement: Maps can include topographic maps of Earth’s land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.]
Disciplinary Core Idea(s):
ESS2.B: Plate Tectonics and Large-Scale System Interactions The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of Earth.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to make sense of phenomena using logical reasoning.
Crosscutting Concepts: Patterns Patterns can be used as evidence to support an explanation.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.7: Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears. Mathematics 4.MD.2: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS2.B; 2.ESS2.C; 5.ESS2.C; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Standard Identifier: 4-PS3-1
Grade:
4
Disciplinary Core Idea:
PS3.A: Definitions of Energy
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Physical Science
Title: 4-PS3 Energy
Performance Expectation: Use evidence to construct an explanation relating the speed of an object to the energy of that object. [Assessment Boundary: Assessment does not include quantitative measures of changes in the speed of an object or on any precise or quantitative definition of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy The faster a given object is moving, the more energy it possesses.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Use evidence (e.g., measurements, observations, patterns) to construct an explanation.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. RI.4.3: Explain events, procedures, ideas, or concepts in a historical, scientific, or technical text, including what happened and why, based on specific information in the text. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. W.4.2.a–d: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. W.4.9: Draw evidence from literary or informational texts to support analysis, reflection, and research.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: MS.PS3.A
Performance Expectation: Use evidence to construct an explanation relating the speed of an object to the energy of that object. [Assessment Boundary: Assessment does not include quantitative measures of changes in the speed of an object or on any precise or quantitative definition of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy The faster a given object is moving, the more energy it possesses.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Use evidence (e.g., measurements, observations, patterns) to construct an explanation.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. RI.4.3: Explain events, procedures, ideas, or concepts in a historical, scientific, or technical text, including what happened and why, based on specific information in the text. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. W.4.2.a–d: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. W.4.9: Draw evidence from literary or informational texts to support analysis, reflection, and research.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: MS.PS3.A
Standard Identifier: 4-PS3-2
Grade:
4
Disciplinary Core Idea:
PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Physical Science
Title: 4-PS3 Energy
Performance Expectation: Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. Light also transfers energy from place to place. Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy.
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: MS.PS3.A; MS.PS3.B; MS.PS4.B
Performance Expectation: Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. Light also transfers energy from place to place. Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy.
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: MS.PS3.A; MS.PS3.B; MS.PS4.B
Standard Identifier: 4-PS3-3
Grade:
4
Disciplinary Core Idea:
PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer, PS3.C: Relationship between Energy and Forces
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Physical Science
Title: 4-PS3 Energy
Performance Expectation: Ask questions and predict outcomes about the changes in energy that occur when objects collide. [Clarification Statement: Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact.] [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. PS3.C: Relationship Between Energy and Forces When objects collide, the contact forces transfer energy so as to change the objects’ motions.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.PS2.B; 3.PS2.A; MS.PS2.A; MS.PS3.A; MS.PS3.B; MS.PS3.C
Performance Expectation: Ask questions and predict outcomes about the changes in energy that occur when objects collide. [Clarification Statement: Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact.] [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. PS3.C: Relationship Between Energy and Forces When objects collide, the contact forces transfer energy so as to change the objects’ motions.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.PS2.B; 3.PS2.A; MS.PS2.A; MS.PS3.A; MS.PS3.B; MS.PS3.C
Showing 1 - 10 of 43 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881