Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 1 - 10 of 41 Standards

Standard Identifier: K-ESS2-2

Grade: K
Disciplinary Core Idea: ESS2.E: Biogeology, ESS3.C: Human Impacts on Earth Systems
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-7: Engaging in Argument From Science
Content Area: Earth and Space Science

Title: K-ESS2 Earth’s Systems

Performance Expectation: Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs. [Clarification Statement: Examples of plants and animals changing their environment could include a squirrel digs in the ground to hide its food and tree roots can break concrete.]

Disciplinary Core Idea(s):
ESS2.E: Biogeology Plants and animals can change their environment. ESS3.C: Human Impacts on Earth Systems Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things. (secondary to K-ESS2-2)

Science & Engineering Practices: Engaging in Argument from Evidence Construct an argument with evidence to support a claim.

Crosscutting Concepts: Systems and System Models Systems in the natural and designed world have parts that work together.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RI.K.1: With prompting and support, ask and answer questions about key details in a text. W.K.1: Use a combination of drawing, dictating, and writing to compose opinion pieces in which they tell a reader the topic or the name of the book they are writing about and state an opinion or preference about the topic or book. W.K.2: Use a combination of drawing, dictating, and writing to compose informative/explanatory texts in which they name what they are writing about and supply some information about the topic.

DCI Connections:
Connections to other DCIs in kindergarten: N/A Articulation across grade-levels: 4.ESS2.E; 5.ESS2.A

Standard Identifier: 3-LS1-1

Grade: 3
Disciplinary Core Idea: LS1.B: Growth and Development of Organisms
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: 3-LS1 From Molecules to Organisms: Structures and Processes

Performance Expectation: Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death. [Clarification Statement: Changes organisms go through during their life form a pattern.] [Assessment Boundary: Assessment of plant life cycles is limited to those of flowering plants. Assessment does not include details of human reproduction.]

Disciplinary Core Idea(s):
LS1.B: Growth and Development of Organisms Reproduction is essential to the continued existence of every kind of organism. Plants and animals have unique and diverse life cycles.

Science & Engineering Practices: Developing and Using Models Develop models to describe phenomena. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science findings are based on recognizing patterns.

Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.

California Common Core State Standards Connections:
ELA/Literacy RI.3.7: Use information gained from illustrations (e.g., maps, photographs) and the words in a text to demonstrate understanding of the text (e.g., where, when, why, and how key events occur). SL.3.5: Create engaging audio recordings of stories or poems that demonstrate fluid reading at an understandable pace; add visual displays when appropriate to emphasize or enhance certain facts or details. Mathematics MP.4: Model with mathematics. 3.NBT.1-3: Use place value understanding and properties of operations to perform multi-digit arithmetic. 3.NF.1-3: Develop understanding of fractions as numbers.

DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: MS.LS1.B

Standard Identifier: 3-LS4-4

Grade: 3
Disciplinary Core Idea: LS4.D: Biodiversity and Humans
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-7: Engaging in Argument From Science
Content Area: Life Science

Title: 3-LS4 Biological Evolution: Unity and Diversity

Performance Expectation: Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.* [Clarification Statement: Examples of environmental changes could include changes in land characteristics, water distribution, temperature, food, and other organisms.] [Assessment Boundary: Assessment is limited to a single environmental change. Assessment does not include the greenhouse effect or climate change.]

Disciplinary Core Idea(s):
LS4.D: Biodiversity and Humans Populations live in a variety of habitats, and change in those habitats affects the organisms living there.

Science & Engineering Practices: Engaging in Argument from Evidence Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem.

Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RI.3.1.a–d: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2.a–d: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.1: Write opinion pieces on topics or texts, supporting a point of view with reasons. W.3.2: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. SL.3.4: Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. a. Plan and deliver an informative/explanatory presentation on a topic that: organizes ideas around major points of information, follows a logical sequence, includes supporting details, uses clear and specific vocabulary, and provides a strong conclusion. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.

DCI Connections:
Connections to other DCIs in third grade: 3.ESS3.B Articulation across grade-levels: K.ESS3.A; K.ETS1.A; 2.LS2.A; 2.LS4.D; 4.ESS3.B; 4.ETS1.A; MS.LS2.A; MS.LS2.C; MS.LS4.C; MS.ESS1.C; MS.ESS3.C

Standard Identifier: 3-PS2-3

Grade: 3
Disciplinary Core Idea: PS2.B: Types of Interactions
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-1: Asking Questions and Defining Problems
Content Area: Physical Science

Title: 3-PS2 Motion and Stability: Forces and Interactions

Performance Expectation: Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. [Clarification Statement: Examples of an electric force could include the force on hair from an electrically charged balloon and the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paperclips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects strength of the force and how the orientation of magnets affects the direction of the magnetic force.] [Assessment Boundary: Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity.]

Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.

Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated based on patterns such as cause and effect relationships.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. RI.3.8: Describe the logical connection between particular sentences and paragraphs in a text (e.g., comparison, cause/effect, first/second/third in a sequence). SL.3.3: Ask and answer questions about information from a speaker, offering appropriate elaboration and detail.

DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: MS.PS2.B

Standard Identifier: 3-PS2-4

Grade: 3
Disciplinary Core Idea: PS2.B: Types of Interactions
Science & Engineering Practice: SEP-1: Asking Questions and Defining Problems
Content Area: Physical Science

Title: 3-PS2 Motion and Stability: Forces and Interactions

Performance Expectation: Define a simple design problem that can be solved by applying scientific ideas about magnets.* [Clarification Statement: Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other.]

Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.

Science & Engineering Practices: Asking Questions and Defining Problems Define a simple problem that can be solved through the development of a new or improved object or tool.

Crosscutting Concepts: Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Scientific discoveries about the natural world can often lead to new and improved technologies, which are developed through the Engineering, Technology, and Applications of Science process.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
N/A

DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ETS1.A; 4.ETS1.A; MS.PS2.B

Standard Identifier: 4-PS3-3

Grade: 4
Disciplinary Core Idea: PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer, PS3.C: Relationship between Energy and Forces
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-1: Asking Questions and Defining Problems
Content Area: Physical Science

Title: 4-PS3 Energy

Performance Expectation: Ask questions and predict outcomes about the changes in energy that occur when objects collide. [Clarification Statement: Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact.] [Assessment Boundary: Assessment does not include quantitative measurements of energy.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. PS3.C: Relationship Between Energy and Forces When objects collide, the contact forces transfer energy so as to change the objects’ motions.

Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships.

Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.

DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.PS2.B; 3.PS2.A; MS.PS2.A; MS.PS3.A; MS.PS3.B; MS.PS3.C

Standard Identifier: 5-ESS2-1

Grade: 5
Disciplinary Core Idea: ESS2.A: Earth Materials and Systems
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: 5-ESS2 Earth’s Systems

Performance Expectation: Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. [Clarification Statement: The geosphere, hydrosphere (including ice), atmosphere, and biosphere are each system is a part of the whole Earth System. Examples could include the influence of the ocean on ecosystems, landform shape, and climate; the influence of the atmosphere on landforms and ecosystems through weather and climate; and the influence of mountain ranges on winds and clouds in the atmosphere. The geosphere, hydrosphere, atmosphere, and biosphere are each a system.] [Assessment Boundary: Assessment is limited to the interactions of two systems at a time.]

Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Earth’s major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth’s surface materials and processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather.

Science & Engineering Practices: Developing and Using Models Develop a model using an example to describe a scientific principle.

Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.

California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 5.G.2: Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.

DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.ESS2.A; 3.ESS2.D; 4.ESS2.A; MS.ESS2.A; MS.ESS2.C; MS.ESS2.D

Standard Identifier: 5-ESS2-2

Grade: 5
Disciplinary Core Idea: ESS2.C: The Roles of Water in Earth's Surface Processes
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-5: Using Mathematics and Computational Thinking
Content Area: Earth and Space Science

Title: 5-ESS2 Earth’s Systems

Performance Expectation: Describe and graph the amounts of salt water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. [Assessment Boundary: Assessment is limited to oceans, lakes, rivers, glaciers, ground water, and polar ice caps, and does not include the atmosphere.]

Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Nearly all of Earth’s available water is in the ocean. Most fresh water is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere.

Science & Engineering Practices: Using Mathematics and Computational Thinking Describe and graph quantities such as area and volume to address scientific questions.

Crosscutting Concepts: Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight and volume.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.

California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.

DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.ESS2.C; MS.ESS2.C; MS.ESS3.A

Standard Identifier: 5-PS2-1

Grade: 5
Disciplinary Core Idea: PS2.B: Types of Interactions
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-7: Engaging in Argument From Science
Content Area: Physical Science

Title: 5-PS2 Motion and Stability: Forces and Interactions

Performance Expectation: Support an argument that the gravitational force exerted by Earth on objects is directed down. [Clarification Statement: “Down” is a local description of the direction that points toward the center of the spherical Earth.] [Assessment Boundary: Assessment does not include mathematical representation of gravitational force.]

Disciplinary Core Idea(s):
PS2.B: Types of Interactions The gravitational force of Earth acting on an object near Earth’s surface pulls that object toward the planet’s center.

Science & Engineering Practices: Engaging in Argument from Evidence Support an argument with evidence, data, or a model.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RI.5.1: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. W.5.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information.

DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 3.PS2.A; 3.PS2.B; MS.PS2.B; MS.ESS1.B; MS.ESS2.C

Standard Identifier: MS-ESS1-1

Grade Range: 6–8
Disciplinary Core Idea: ESS1.A: The Universe and its Stars, ESS1.B: Earth and the Solar System
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: MS-ESS1 Earth’s Place in the Universe

Performance Expectation: Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. [Clarification Statement: Examples of models can be physical, graphical, or conceptual.]

Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars Patterns of the apparent motion of the sun, the moon, and stars in the sky can be observed, described, predicted, and explained with models. ESS1.B: Earth and the Solar System This model of the solar system can explain eclipses of the sun and the moon. Earth’s spin axis is fixed in direction over the short-term but tilted relative to its orbit around the sun. The seasons are a result of that tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year.

Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.

Crosscutting Concepts: Patterns Patterns can be used to identify cause-and-effect relationships. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.4: Model with mathematics. 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS2.B Articulation across grade-bands: 3.PS2.A; 5.PS2.B; 5.ESS1.B; HS.PS2.A; HS.PS2.B; HS.ESS1.B

Showing 1 - 10 of 41 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881