Science (CA NGSS) Standards
Remove this criterion from the search
ESS1.A: The Universe and its Stars
Remove this criterion from the search
ESS2.C: The Roles of Water in Earth's Surface Processes
Remove this criterion from the search
ESS3.A: Natural Resources
Remove this criterion from the search
ESS3.B: Natural Hazards
Remove this criterion from the search
ESS3.C: Human Impacts on Earth Systems
Remove this criterion from the search
ESS3.D: Global Climate Change
Remove this criterion from the search
ETS1.A: Defining and Delimiting Engineering Problems
Remove this criterion from the search
ETS1.C: Optimizing the Design Solution
Remove this criterion from the search
LS1.C: Organization for Matter and Energy Flow in Organisms
Remove this criterion from the search
LS1.D: Information Processing
Remove this criterion from the search
LS3.B: Variation of Traits
Remove this criterion from the search
PS3.D: Energy in Chemical Processes
Results
Showing 11 - 20 of 80 Standards
Standard Identifier: 1-LS3-1
Grade:
1
Disciplinary Core Idea:
LS3.A: Inheritance of Traits, LS3.B: Variation of Traits
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Life Science
Title: 1-LS3 Heredity: Inheritance and Variation of Traits
Performance Expectation: Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents. [Clarification Statement: Examples of patterns could include features plants or animals share. Examples of observations could include leaves from the same kind of plant are the same shape but can differ in size; and, a particular breed of dog looks like its parents but is not exactly the same.] [Assessment Boundary: Assessment does not include inheritance or animals that undergo metamorphosis or hybrids.]
Disciplinary Core Idea(s):
LS3.A: Inheritance of Traits Young animals are very much, but not exactly like, their parents. Plants also are very much, but not exactly, like their parents. LS3.B: Variation of Traits Individuals of the same kind of plant or animal are recognizable as similar but can also vary in many ways.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed, used to describe phenomena, and used as evidence.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.1.1: Ask and answer questions about key details in a text. W.1.7: Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). W.1.8: With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.5: Use appropriate tools strategically. 1.MD.1: Order three objects by length; compare the lengths of two objects indirectly by using a third object.
DCI Connections:
Connections to other DCIs in first grade: N/A Articulation across grade-levels: 3.LS3.A; 3.LS3.B
Performance Expectation: Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents. [Clarification Statement: Examples of patterns could include features plants or animals share. Examples of observations could include leaves from the same kind of plant are the same shape but can differ in size; and, a particular breed of dog looks like its parents but is not exactly the same.] [Assessment Boundary: Assessment does not include inheritance or animals that undergo metamorphosis or hybrids.]
Disciplinary Core Idea(s):
LS3.A: Inheritance of Traits Young animals are very much, but not exactly like, their parents. Plants also are very much, but not exactly, like their parents. LS3.B: Variation of Traits Individuals of the same kind of plant or animal are recognizable as similar but can also vary in many ways.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed, used to describe phenomena, and used as evidence.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.1.1: Ask and answer questions about key details in a text. W.1.7: Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). W.1.8: With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.5: Use appropriate tools strategically. 1.MD.1: Order three objects by length; compare the lengths of two objects indirectly by using a third object.
DCI Connections:
Connections to other DCIs in first grade: N/A Articulation across grade-levels: 3.LS3.A; 3.LS3.B
Standard Identifier: K-2-ETS1-1
Grade:
1
Disciplinary Core Idea:
ETS1.A: Defining and Delimiting Engineering Problems
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Engineering, Technology, and Applications of Science
Title: K–2-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems A situation that people want to change or create can be approached as a problem to be solved through engineering. Asking questions, making observations, and gathering information are helpful in thinking about problems. Before beginning to design a solution, it is important to clearly understand the problem.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions based on observations to find more information about the natural and/or designed world(s). Define a simple problem that can be solved through the development of a new or improved object or tool.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to K-2-ETS1.A: Defining and Delimiting Engineering Problems include: Kindergarten: K-PS2-2; K-ESS3-2 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.C
Performance Expectation: Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems A situation that people want to change or create can be approached as a problem to be solved through engineering. Asking questions, making observations, and gathering information are helpful in thinking about problems. Before beginning to design a solution, it is important to clearly understand the problem.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions based on observations to find more information about the natural and/or designed world(s). Define a simple problem that can be solved through the development of a new or improved object or tool.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to K-2-ETS1.A: Defining and Delimiting Engineering Problems include: Kindergarten: K-PS2-2; K-ESS3-2 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.C
Standard Identifier: K-2-ETS1-3
Grade:
1
Disciplinary Core Idea:
ETS1.C: Optimizing the Design Solution
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Engineering, Technology, and Applications of Science
Title: K–2-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
Disciplinary Core Idea(s):
ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to K-2-ETS1.C: Optimizing the Design Solution include: Second Grade: 2-ESS2-1 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C
Performance Expectation: Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
Disciplinary Core Idea(s):
ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to K-2-ETS1.C: Optimizing the Design Solution include: Second Grade: 2-ESS2-1 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C
Standard Identifier: 2-ESS2-1
Grade:
2
Disciplinary Core Idea:
ESS2.A: Earth Materials and Systems, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: 2-ESS2 Earth’s Systems
Performance Expectation: Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.* [Clarification Statement: Examples of solutions could include different designs of dikes and windbreaks to hold back wind and water, and different designs for using shrubs, grass, and trees to hold back the land.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Wind and water can change the shape of the land. ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (secondary to 2-ESS2-1)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Compare multiple solutions to a problem.
Crosscutting Concepts: Stability and Change Things may change slowly or rapidly. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Developing and using technology has impacts on the natural world. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Scientists study the natural and material world.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.2.3: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. RI.2.9: Compare and contrast the most important points presented by two texts on the same topic. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.5: Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 4.ESS2.B; 5.ESS2.C
Performance Expectation: Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.* [Clarification Statement: Examples of solutions could include different designs of dikes and windbreaks to hold back wind and water, and different designs for using shrubs, grass, and trees to hold back the land.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Wind and water can change the shape of the land. ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (secondary to 2-ESS2-1)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Compare multiple solutions to a problem.
Crosscutting Concepts: Stability and Change Things may change slowly or rapidly. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Developing and using technology has impacts on the natural world. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Scientists study the natural and material world.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.2.3: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. RI.2.9: Compare and contrast the most important points presented by two texts on the same topic. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.5: Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 4.ESS2.B; 5.ESS2.C
Standard Identifier: 2-ESS2-3
Grade:
2
Disciplinary Core Idea:
ESS2.C: The Roles of Water in Earth's Surface Processes
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area:
Earth and Space Science
Title: 2-ESS2 Earth’s Systems
Performance Expectation: Obtain information to identify where water is found on Earth and that it can be solid or liquid.
Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Water is found in the ocean, rivers, lakes, and ponds. Water exists as solid ice and in liquid form.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Obtain information using various texts, text features (e.g., headings, tables of contents, glossaries, electronic menus, icons), and other media that will be useful in answering a scientific question.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question.
DCI Connections:
Connections to other DCIs in second grade: 2.PS1.A Articulation across grade-levels: 5.ESS2.C
Performance Expectation: Obtain information to identify where water is found on Earth and that it can be solid or liquid.
Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Water is found in the ocean, rivers, lakes, and ponds. Water exists as solid ice and in liquid form.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Obtain information using various texts, text features (e.g., headings, tables of contents, glossaries, electronic menus, icons), and other media that will be useful in answering a scientific question.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question.
DCI Connections:
Connections to other DCIs in second grade: 2.PS1.A Articulation across grade-levels: 5.ESS2.C
Standard Identifier: K-2-ETS1-1
Grade:
2
Disciplinary Core Idea:
ETS1.A: Defining and Delimiting Engineering Problems
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Engineering, Technology, and Applications of Science
Title: K–2-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems A situation that people want to change or create can be approached as a problem to be solved through engineering. Asking questions, making observations, and gathering information are helpful in thinking about problems. Before beginning to design a solution, it is important to clearly understand the problem.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions based on observations to find more information about the natural and/or designed world(s). Define a simple problem that can be solved through the development of a new or improved object or tool.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
DCI Connections:
Connections to K-2-ETS1.A: Defining and Delimiting Engineering Problems include: Kindergarten: K-PS2-2; K-ESS3-2 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.C
Performance Expectation: Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems A situation that people want to change or create can be approached as a problem to be solved through engineering. Asking questions, making observations, and gathering information are helpful in thinking about problems. Before beginning to design a solution, it is important to clearly understand the problem.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions based on observations to find more information about the natural and/or designed world(s). Define a simple problem that can be solved through the development of a new or improved object or tool.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
DCI Connections:
Connections to K-2-ETS1.A: Defining and Delimiting Engineering Problems include: Kindergarten: K-PS2-2; K-ESS3-2 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.C
Standard Identifier: K-2-ETS1-3
Grade:
2
Disciplinary Core Idea:
ETS1.C: Optimizing the Design Solution
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Engineering, Technology, and Applications of Science
Title: K–2-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
Disciplinary Core Idea(s):
ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
DCI Connections:
Connections to K-2-ETS1.C: Optimizing the Design Solution include: Second Grade: 2-ESS2-1 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C
Performance Expectation: Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
Disciplinary Core Idea(s):
ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
DCI Connections:
Connections to K-2-ETS1.C: Optimizing the Design Solution include: Second Grade: 2-ESS2-1 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C
Standard Identifier: 3-5-ETS1-1
Grade:
3
Disciplinary Core Idea:
ETS1.A: Defining and Delimiting Engineering Problems
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Engineering, Technology, and Applications of Science
Title: 3–5-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.
Science & Engineering Practices: Asking Questions and Defining Problems Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost.
Crosscutting Concepts: Influence of Engineering, Technology, and Science on Society and the Natural World People’s needs and wants change over time, as do their demands for new and improved technologies.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a,b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.OA.1-4: Represent and solve problems involving multiplication and division. 3.OA.5-6: Understand properties of multiplication and the relationship between multiplication and division. 3.OA.7: Multiply and divide within 100. 3.OA.8-9: Solve problems involving the four operations, and identify and explain patterns in arithmetic. 4.OA.1-3: Use the four operations with whole numbers to solve problems. 4.OA.4: Gain familiarity with factors and multiples. 4.OA.5: Generate and analyze patterns. 5.OA.1-2.1: Write and interpret numerical expressions. 5.OA.3: Analyze patterns and relationships.
DCI Connections:
Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include: Fourth Grade: 4-PS3-4 Articulation across grade-bands: K-2.ETS1.A; MS.ETS1.A; MS.ETS1.B
Performance Expectation: Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
Disciplinary Core Idea(s):
ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.
Science & Engineering Practices: Asking Questions and Defining Problems Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost.
Crosscutting Concepts: Influence of Engineering, Technology, and Science on Society and the Natural World People’s needs and wants change over time, as do their demands for new and improved technologies.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a,b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.OA.1-4: Represent and solve problems involving multiplication and division. 3.OA.5-6: Understand properties of multiplication and the relationship between multiplication and division. 3.OA.7: Multiply and divide within 100. 3.OA.8-9: Solve problems involving the four operations, and identify and explain patterns in arithmetic. 4.OA.1-3: Use the four operations with whole numbers to solve problems. 4.OA.4: Gain familiarity with factors and multiples. 4.OA.5: Generate and analyze patterns. 5.OA.1-2.1: Write and interpret numerical expressions. 5.OA.3: Analyze patterns and relationships.
DCI Connections:
Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include: Fourth Grade: 4-PS3-4 Articulation across grade-bands: K-2.ETS1.A; MS.ETS1.A; MS.ETS1.B
Standard Identifier: 3-5-ETS1-3
Grade:
3
Disciplinary Core Idea:
ETS1.B: Developing Possible Solutions, ETS1.C: Optimizing the Design Solution
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Engineering, Technology, and Applications of Science
Title: 3–5-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to 3-5-ETS1.B: Developing Possible Solutions Problems include: Fourth Grade: 4-ESS3-2 Connections to K-2-ETS1.C: Optimizing the Design Solution include: Fourth Grade: 4-PS4-3 Articulation across grade-bands: K-2.ETS1.A; K-2.ETS1.C; MS.ETS1.B; MS.ETS1.C
Performance Expectation: Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to 3-5-ETS1.B: Developing Possible Solutions Problems include: Fourth Grade: 4-ESS3-2 Connections to K-2-ETS1.C: Optimizing the Design Solution include: Fourth Grade: 4-PS4-3 Articulation across grade-bands: K-2.ETS1.A; K-2.ETS1.C; MS.ETS1.B; MS.ETS1.C
Standard Identifier: 3-ESS3-1
Grade:
3
Disciplinary Core Idea:
ESS3.B: Natural Hazards
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Earth and Space Science
Title: 3-ESS3 Earth and Human Activity
Performance Expectation: Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.* [Clarification Statement: Examples of design solutions to weather-related hazards could include barriers to prevent flooding, wind resistant roofs, and lightning rods.]
Disciplinary Core Idea(s):
ESS3.B: Natural Hazards A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take steps to reduce their impacts. (Note: This Disciplinary Core Idea is also addressed by 4-ESS3-2.)
Science & Engineering Practices: Engaging in Argument from Evidence Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Engineers improve existing technologies or develop new ones to increase their benefits (e.g., better artificial limbs), decrease known risks (e.g., seatbelts in cars), and meet societal demands (e.g., cell phones). Connections to Nature of Science: Science is a Human Endeavor Science affects everyday life.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.3.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons. W.3.7: Conduct short research projects that build knowledge about a topic. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ESS3.B; K.ETS1.A; 4.ESS3.B; 4.ETS1.A; MS.ESS3.B
Performance Expectation: Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.* [Clarification Statement: Examples of design solutions to weather-related hazards could include barriers to prevent flooding, wind resistant roofs, and lightning rods.]
Disciplinary Core Idea(s):
ESS3.B: Natural Hazards A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take steps to reduce their impacts. (Note: This Disciplinary Core Idea is also addressed by 4-ESS3-2.)
Science & Engineering Practices: Engaging in Argument from Evidence Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Engineers improve existing technologies or develop new ones to increase their benefits (e.g., better artificial limbs), decrease known risks (e.g., seatbelts in cars), and meet societal demands (e.g., cell phones). Connections to Nature of Science: Science is a Human Endeavor Science affects everyday life.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.3.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons. W.3.7: Conduct short research projects that build knowledge about a topic. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ESS3.B; K.ETS1.A; 4.ESS3.B; 4.ETS1.A; MS.ESS3.B
Showing 11 - 20 of 80 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881