Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 31 - 40 of 46 Standards

Standard Identifier: HS-ESS1-1

Grade Range: 9–12
Disciplinary Core Idea: ESS1.A: The Universe and its Stars, PS3.D: Energy in Chemical Processes
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: HS-ESS1 Earth’s Place in the Universe

Performance Expectation: Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun’s core to release energy that eventually reaches Earth in the form of radiation. [Clarification Statement: Emphasis is on the energy transfer mechanisms that allow energy from nuclear fusion in the sun’s core to reach Earth. Examples of evidence for the model include observations of the masses and lifetimes of other stars, as well as the ways that the sun’s radiation varies due to sudden solar flares (“space weather”), the 11-year sunspot cycle, and non-cyclic variations over centuries.] [Assessment Boundary: Assessment does not include details of the atomic and sub-atomic processes involved with the sun’s nuclear fusion.]

Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The star called the sun is changing and will burn out over a lifespan of approximately 10 billion years. PS3.D: Energy in Chemical Processes Nuclear Fusion processes in the center of the sun release the energy that ultimately reaches Earth as radiation. (secondary to HS-ESS1-1)

Science & Engineering Practices: Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or between components of a system.

Crosscutting Concepts: Scale, Proportion, and Quantity The significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. HSN-Q.A.2: Define appropriate quantities for the purpose of descriptive modeling. HSN-Q.A.3: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.C; HS.PS3.A Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS1.A; MS.ESS2.A; MS.ESS2.D

Standard Identifier: HS-ESS1-2

Grade Range: 9–12
Disciplinary Core Idea: ESS1.A: The Universe and its Stars, PS4.B: Electromagnetic Radiation
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, cycles, and conservation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Earth and Space Science

Title: HS-ESS1 Earth’s Place in the Universe

Performance Expectation: Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe. [Clarification Statement: Emphasis is on the astronomical evidence of the red shift of light from galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases (from the spectra of electromagnetic radiation from stars), which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).]

Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The study of stars’ light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth. The Big Bang theory is supported by observations of distant galaxies receding from our own, of the measured composition of stars and non-stellar gases, and of the maps of spectra of the primordial radiation (cosmic microwave background) that still fills the universe. Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the process releases electromagnetic energy. Heavier elements are produced when certain massive stars achieve a supernova stage and explode. PS4.B: Electromagnetic Radiation Atoms of each element emit and absorb characteristic frequencies of light. These characteristics allow identification of the presence of an element, even in microscopic quantities. (secondary to HS-ESS1-2)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence.

Crosscutting Concepts: Energy and Matter Energy cannot be created or destroyed–only moved between one place and another place, between objects and/or fields, or between systems. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future. Science assumes the universe is a vast single system in which basic laws are consistent.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-10.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.C; HS.PS3.A; HS.PS3.B; HS.PS4.A Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS1.A

Standard Identifier: HS-ESS1-3

Grade Range: 9–12
Disciplinary Core Idea: ESS1.A: The Universe and its Stars
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area: Earth and Space Science

Title: HS-ESS1 Earth’s Place in the Universe

Performance Expectation: Communicate scientific ideas about the way stars, over their life cycle, produce elements. [Clarification Statement: Emphasis is on the way nucleosynthesis, and therefore the different elements created, varies as a function of the mass of a star and the stage of its lifetime.] [Assessment Boundary: Details of the many different nucleosynthesis pathways for stars of differing masses are not assessed.]

Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The study of stars’ light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth. Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the process releases electromagnetic energy. Heavier elements are produced when certain massive stars achieve a supernova stage and explode.

Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Communicate scientific ideas (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically).

Crosscutting Concepts: Energy and Matter In nuclear processes, atoms are not conserved, but the total number of protons plus neutrons is conserved.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy WHST.9-10.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. SL.11-12.4: Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. Mathematics MP.2: Reason abstractly and quantitatively.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.C Articulation across grade-bands: MS.PS1.A; MS.ESS1.A

Standard Identifier: HS-ESS2-5

Grade Range: 9–12
Disciplinary Core Idea: ESS2.C: The Roles of Water in Earth's Surface Processes
Cross Cutting Concept: CCC-6: Structure and Function
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Earth and Space Science

Title: HS-ESS2 Earth’s Systems

Performance Expectation: Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. [Clarification Statement: Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).]

Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes The abundance of liquid water on Earth’s surface and its unique combination of physical and chemical properties are central to the planet’s dynamics. These properties include water’s exceptional capacity to absorb, store, and release large amounts of energy, transmit sunlight, expand upon freezing, dissolve and transport materials, and lower the viscosities and melting points of rocks.

Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.

Crosscutting Concepts: Structure and Function The functions and properties of natural and designed objects and systems can be inferred from their overall structure, the way their components are shaped and used, and the molecular substructures of its various materials.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.B; HS.PS3.B; HS.ESS3.C Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS2.A; MS.ESS2.C; MS.ESS2.D

Standard Identifier: HS-LS2-3

Grade Range: 9–12
Disciplinary Core Idea: LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Life Science

Title: HS-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions. [Clarification Statement: Emphasis is on conceptual understanding of the role of aerobic and anaerobic respiration in different environments.] [Assessment Boundary: Assessment does not include the specific chemical processes of either aerobic or anaerobic respiration.]

Disciplinary Core Idea(s):
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Photosynthesis and cellular respiration (including anaerobic processes) provide most of the energy for life processes.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Connections to Nature of Science: Scientific Knowledge is Open to Revision in Light of New Evidence Most scientific knowledge is quite durable, but is, in principle, subject to change based on new evidence and/or reinterpretation of existing evidence.

Crosscutting Concepts: Energy and Matter Energy drives the cycling of matter within and between systems.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9–12.2.a–e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.9-12.5: Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.B; HS.PS3.B; HS.PS3.D; HS.ESS2.A Articulation across grade-bands: MS.PS1.B; MS.PS3.D; MS.LS1.C; MS.LS2.B

Standard Identifier: HS-LS2-4

Grade Range: 9–12
Disciplinary Core Idea: LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-5: Using Mathematics and Computational Thinking
Content Area: Life Science

Title: HS-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. [Clarification Statement: Emphasis is on using a mathematical model of stored energy in biomass to describe the transfer of energy from one trophic level to another and that matter and energy are conserved as matter cycles and energy flows through ecosystems. Emphasis is on atoms and molecules such as carbon, oxygen, hydrogen and nitrogen being conserved as they move through an ecosystem.] [Assessment Boundary: Assessment is limited to proportional reasoning to describe the cycling of matter and flow of energy.]

Disciplinary Core Idea(s):
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Plants or algae form the lowest level of the food web. At each link upward in a food web, only a small fraction of the matter consumed at the lower level is transferred upward, to produce growth and release energy in cellular respiration at the higher level. Given this inefficiency, there are generally fewer organisms at higher levels of a food web. Some matter reacts to release energy for life functions, some matter is stored in newly made structures, and much is discarded. The chemical elements that make up the molecules of organisms pass through food webs and into and out of the atmosphere and soil, and they are combined and recombined in different ways. At each link in an ecosystem, matter and energy are conserved.

Science & Engineering Practices: Using Mathematics and Computational Thinking Use mathematical representations of phenomena or design solutions to support claims.

Crosscutting Concepts: Energy and Matter Energy cannot be created or destroyed—it only moves between one place and another place, between objects and/or fields, or between systems.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B; HS.PS3.D Articulation across grade-bands: MS.PS3.D; MS.LS1.C; MS.LS2.B

Standard Identifier: HS-LS2-5

Grade Range: 9–12
Disciplinary Core Idea: LS2.B: Cycles of Matter and Energy Transfer in Ecosystems, PS3.D: Energy in Chemical Processes
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: HS-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. [Clarification Statement: Examples of models could include simulations and mathematical models.] [Assessment Boundary: Assessment does not include the specific chemical steps of photosynthesis and respiration.]

Disciplinary Core Idea(s):
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged among the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes. PS3.D: Energy in Chemical Processes The main way that solar energy is captured and stored on Earth is through the complex chemical process known as photosynthesis. (secondary to HS-LS2-5)

Science & Engineering Practices: Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or components of a system.

Crosscutting Concepts: Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
N/A

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.B; HS.ESS2.D Articulation across grade-bands: MS.PS3.D; MS.LS1.C; MS.LS2.B; MS.ESS2.A

Standard Identifier: HS-PS1-2

Grade Range: 9–12
Disciplinary Core Idea: PS1.A: Structure and Properties of Matter, PS1.B: Chemical Reactions
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: HS-PS1 Matter and Its Interactions

Performance Expectation: Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. [Clarification Statement: Examples of chemical reactions could include the reaction of sodium and chlorine, of carbon and oxygen, or of carbon and hydrogen.] [Assessment Boundary: Assessment is limited to chemical reactions involving main group elements and combustion reactions.]

Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter The periodic table orders elements horizontally by the number of protons in the atom’s nucleus and places those with similar chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states. PS1.B: Chemical Reactions The fact that atoms are conserved, together with knowledge of the chemical properties of the elements involved, can be used to describe and predict chemical reactions.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.

Crosscutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy WHST.11-12.2.a-e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.5: Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. Mathematics N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.LS1.C; HS.ESS2.C Articulation across grade-bands: MS.PS1.A; MS.PS1.B

Standard Identifier: HS-PS1-4

Grade Range: 9–12
Disciplinary Core Idea: PS1.A: Structure and Properties of Matter, PS1.B: Chemical Reactions
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: HS-PS1 Matter and Its Interactions

Performance Expectation: Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy. [Clarification Statement: Emphasis is on the idea that a chemical reaction is a system that affects the energy change. Examples of models could include molecular-level drawings and diagrams of reactions, graphs showing the relative energies of reactants and products, and representations showing energy is conserved.] [Assessment Boundary: Assessment does not include calculating the total bond energy changes during a chemical reaction from the bond energies of reactants and products.]

Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter A stable molecule has less energy than the same set of atoms separated; one must provide at least this energy in order to take the molecule apart. PS1.B: Chemical Reactions Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of molecules that are matched by changes in kinetic energy.

Science & Engineering Practices: Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or between components of a system.

Crosscutting Concepts: Energy and Matter Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.A; HS.PS3.B; HS.PS3.D; HS.LS1.C Articulation across grade-bands: MS.PS1.A; MS.PS1.B; MS.PS2.B; MS.PS3.D; MS.LS1.C

Standard Identifier: HS-PS1-5

Grade Range: 9–12
Disciplinary Core Idea: PS1.B: Chemical Reactions
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: HS-PS1 Matter and Its Interactions

Performance Expectation: Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs. [Clarification Statement: Emphasis is on student reasoning that focuses on the number and energy of collisions between molecules.] [Assessment Boundary: Assessment is limited to simple reactions in which there are only two reactants; evidence from temperature, concentration, and rate data; and qualitative relationships between rate and temperature.]

Disciplinary Core Idea(s):
PS1.B: Chemical Reactions Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of molecules that are matched by changes in kinetic energy.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific principles and evidence to provide an explanation of phenomena and solve design problems, taking into account possible unanticipated effects.

Crosscutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.11-12.2.a-e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.A Articulation across grade-bands: MS.PS1.A; MS.PS1.B; MS.PS2.B; MS.PS3.A; MS.PS3.B

Showing 31 - 40 of 46 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881