Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 11 - 20 of 26 Standards

Standard Identifier: MS-ESS2-5

Grade Range: 6–8
Disciplinary Core Idea: ESS2.C: The Roles of Water in Earth's Surface Processes, ESS2.D: Weather and Climate
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Earth and Space Science

Title: MS-ESS2 Earth’s Systems

Performance Expectation: Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions. [Clarification Statement: Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted within probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation).] [Assessment Boundary: Assessment does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations.]

Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns. ESS2.D: Weather and Climate Because these patterns are so complex, weather can only be predicted probabilistically.

Science & Engineering Practices: Planning and Carrying Out Investigations Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of conditions.

Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. WHST.6-8.8: Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. Mathematics MP.2: Reason abstractly and quantitatively. 6.NS.5: Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS2.A; MS.PS3.A; MS.PS3.B Articulation across grade-bands: 3.ESS2.D; 5.ESS2.A; HS.ESS2.C; HS.ESS2.D

Standard Identifier: MS-ESS2-6

Grade Range: 6–8
Disciplinary Core Idea: ESS2.C: The Roles of Water in Earth's Surface Processes, ESS2.D: Weather and Climate
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: MS-ESS2 Earth’s Systems

Performance Expectation: Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. [Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.] [Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.]

Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents. ESS2.D: Weather and Climate Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns. The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents.

Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.

Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS3.B; MS.PS4.B Articulation across grade-bands: 3.PS2.A; 3.ESS2.D; 5.ESS2.A; HS.PS2.B; HS.PS3.B; HS.ESS1.B; HS.ESS2.A; HS.ESS2.D

Standard Identifier: MS-LS2-3

Grade Range: 6–8
Disciplinary Core Idea: LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: MS-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. [Clarification Statement: Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system.] [Assessment Boundary: Assessment does not include the use of chemical reactions to describe the processes.]

Disciplinary Core Idea(s):
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the three groups interact within an ecosystem. Transfers of matter into and out of the physical environment occur at every level. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem.

Science & Engineering Practices: Developing and Using Models Develop a model to describe phenomena.

Crosscutting Concepts: Energy and Matter The transfer of energy can be tracked as energy flows through a natural system. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.B Articulation across grade-bands: 5.LS2.A; 5.LS2.B; HS.PS3.B; HS.LS1.C; HS.LS2.B; HS.ESS2.A

Standard Identifier: MS-LS4-1

Grade Range: 6–8
Disciplinary Core Idea: LS4.A: Evidence of Common Ancestry and Diversity
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-4: Analyzing and Interpreting Data
Content Area: Life Science

Title: MS-LS4 Biological Evolution: Unity and Diversity

Performance Expectation: Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. [Clarification Statement: Emphasis is on finding patterns of changes in the level of complexity of anatomical structures in organisms and the chronological order of fossil appearance in the rock layers.] [Assessment Boundary: Assessment does not include the names of individual species or geological eras in the fossil record.]

Disciplinary Core Idea(s):
LS4.A: Evidence of Common Ancestry and Diversity The collection of fossils and their placement in chronological order (e.g., through the location of the sedimentary layers in which they are found or through radioactive dating) is known as the fossil record. It documents the existence, diversity, extinction, and change of many life forms throughout the history of life on Earth.

Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.

Crosscutting Concepts: Patterns Graphs, charts, and images can be used to identify patterns in data. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).

DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS1.C; MS.ESS2.B Articulation across grade-bands: 3.LS4.A; HS.LS4.A; HS.ESS1.C

Standard Identifier: MS-LS4-2

Grade Range: 6–8
Disciplinary Core Idea: LS4.A: Evidence of Common Ancestry and Diversity
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Life Science

Title: MS-LS4 Biological Evolution: Unity and Diversity

Performance Expectation: Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships. [Clarification Statement: Emphasis is on explanations of the evolutionary relationships among organisms in terms of similarity or differences of the gross appearance of anatomical structures.]

Disciplinary Core Idea(s):
LS4.A: Evidence of Common Ancestry and Diversity Anatomical similarities and differences between various organisms living today and between them and organisms in the fossil record, enable the reconstruction of evolutionary history and the inference of lines of evolutionary descent.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas to construct an explanation for real-world phenomena, examples, or events.

Crosscutting Concepts: Patterns Patterns can be used to identify cause and effect relationships. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. WHST.6–8.2.a–f: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.6-8.9: Draw evidence from informational texts to support analysis, reflection, and research. SL.8.1.a–d: Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade 8 topics, texts, and issues, building on others’ ideas and expressing their own clearly. SL.8.4: Present claims and findings (e.g., argument, narrative, response to literature presentations), emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. a. Plan and present a narrative that: establishes a context and point of view, presents a logical sequence, uses narrative techniques (e.g., dialogue, pacing, description, sensory language), uses a variety of transitions, and provides a conclusion that reflects the experience.

DCI Connections:
Connections to other DCIs in this grade-band: MS.LS3.A; MS.LS3.B; MS.ESS1.C Articulation across grade-bands: 3.LS4.A; HS.LS4.A; HS.ESS1.C

Standard Identifier: MS-LS4-3

Grade Range: 6–8
Disciplinary Core Idea: LS4.A: Evidence of Common Ancestry and Diversity
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-4: Analyzing and Interpreting Data
Content Area: Life Science

Title: MS-LS4 Biological Evolution: Unity and Diversity

Performance Expectation: Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy. [Clarification Statement: Emphasis is on inferring general patterns of relatedness among embryos of different organisms by comparing the macroscopic appearance of diagrams or pictures.] [Assessment Boundary: Assessment of comparisons is limited to gross appearance of anatomical structures in embryological development.]

Disciplinary Core Idea(s):
LS4.A: Evidence of Common Ancestry and Diversity Comparison of the embryological development of different species also reveals similarities that show relationships not evident in the fully-formed anatomy.

Science & Engineering Practices: Analyzing and Interpreting Data Analyze displays of data to identify linear and nonlinear relationships.

Crosscutting Concepts: Patterns Graphs, charts, and images can be used to identify patterns in data.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.LS4.A

Standard Identifier: MS-PS2-1

Grade Range: 6–8
Disciplinary Core Idea: PS2.A: Forces and Motion
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: MS-PS2 Motion and Stability: Forces and Interactions

Performance Expectation: Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.* [Clarification Statement: Examples of practical problems could include the impact of collisions between two cars, between a car and stationary objects, and between a meteor and a space vehicle.] [Assessment Boundary: Assessment is limited to vertical or horizontal interactions in one dimension.]

Disciplinary Core Idea(s):
PS2.A: Forces and Motion For any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the force that the second object exerts on the first, but in the opposite direction (Newton’s third law).

Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas or principles to design an object, tool, process or system.

Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy and matter flows within systems. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. RST.6-8.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. Mathematics MP.2: Reason abstractly and quantitatively. 6.NS.5: Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. 6.EE.2.a-c: Write, read, and evaluate expressions in which letters stand for numbers. 7.EE.3-4: Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS3.C Articulation across grade-bands: 3.PS2.A; HS.PS2.A

Standard Identifier: MS-PS2-2

Grade Range: 6–8
Disciplinary Core Idea: PS2.A: Forces and Motion
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Physical Science

Title: MS-PS2 Motion and Stability: Forces and Interactions

Performance Expectation: Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. [Clarification Statement: Emphasis is on balanced (Newton’s First Law) and unbalanced forces in a system, qualitative comparisons of forces, mass and changes in motion (Newton’s Second Law), frame of reference, and specification of units.] [Assessment Boundary: Assessment is limited to forces and changes in motion in one-dimension in an inertial reference frame and to change in one variable at a time. Assessment does not include the use of trigonometry.]

Disciplinary Core Idea(s):
PS2.A: Forces and Motion The motion of an object is determined by the sum of the forces acting on it; if the total force on the object is not zero, its motion will change. The greater the mass of the object, the greater the force needed to achieve the same change in motion. For any given object, a larger force causes a larger change in motion. All positions of objects and the directions of forces and motions must be described in an arbitrarily chosen reference frame and arbitrarily chosen units of size. In order to share information with other people, these choices must also be shared.

Science & Engineering Practices: Planning and Carrying Out Investigations Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.

Crosscutting Concepts: Stability and Change Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and forces at different scales.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. Mathematics MP.2: Reason abstractly and quantitatively. 6.EE.2.a-c: Write, read, and evaluate expressions in which letters stand for numbers. 7.EE.3-4: Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS3.A; MS.PS3.B; MS.ESS2.C Articulation across grade-bands: 3.PS2.A; HS.PS2.A; HS.PS3.B; HS.ESS1.B

Standard Identifier: HS-ESS2-5

Grade Range: 9–12
Disciplinary Core Idea: ESS2.C: The Roles of Water in Earth's Surface Processes
Cross Cutting Concept: CCC-6: Structure and Function
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Earth and Space Science

Title: HS-ESS2 Earth’s Systems

Performance Expectation: Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. [Clarification Statement: Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).]

Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes The abundance of liquid water on Earth’s surface and its unique combination of physical and chemical properties are central to the planet’s dynamics. These properties include water’s exceptional capacity to absorb, store, and release large amounts of energy, transmit sunlight, expand upon freezing, dissolve and transport materials, and lower the viscosities and melting points of rocks.

Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.

Crosscutting Concepts: Structure and Function The functions and properties of natural and designed objects and systems can be inferred from their overall structure, the way their components are shaped and used, and the molecular substructures of its various materials.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.B; HS.PS3.B; HS.ESS3.C Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS2.A; MS.ESS2.C; MS.ESS2.D

Standard Identifier: HS-LS2-3

Grade Range: 9–12
Disciplinary Core Idea: LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Life Science

Title: HS-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions. [Clarification Statement: Emphasis is on conceptual understanding of the role of aerobic and anaerobic respiration in different environments.] [Assessment Boundary: Assessment does not include the specific chemical processes of either aerobic or anaerobic respiration.]

Disciplinary Core Idea(s):
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Photosynthesis and cellular respiration (including anaerobic processes) provide most of the energy for life processes.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Connections to Nature of Science: Scientific Knowledge is Open to Revision in Light of New Evidence Most scientific knowledge is quite durable, but is, in principle, subject to change based on new evidence and/or reinterpretation of existing evidence.

Crosscutting Concepts: Energy and Matter Energy drives the cycling of matter within and between systems.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9–12.2.a–e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.9-12.5: Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.B; HS.PS3.B; HS.PS3.D; HS.ESS2.A Articulation across grade-bands: MS.PS1.B; MS.PS3.D; MS.LS1.C; MS.LS2.B

Showing 11 - 20 of 26 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881