Science (CA NGSS) Standards
Remove this criterion from the search
ESS1.C: The History of Planet Earth
Remove this criterion from the search
ESS2.A: Earth Materials and Systems
Remove this criterion from the search
ESS2.B: Plate Tectonics and Large-Scale System Interactions
Remove this criterion from the search
ESS2.C: The Roles of Water in Earth's Surface Processes
Remove this criterion from the search
ESS3.C: Human Impacts on Earth Systems
Remove this criterion from the search
LS1.A: Structure and Function
Remove this criterion from the search
LS1.B: Growth and Development of Organisms
Remove this criterion from the search
LS4.C: Adaptation
Remove this criterion from the search
PS1.A: Structure and Properties of Matter
Remove this criterion from the search
PS1.C: Nuclear Processes
Results
Showing 1 - 10 of 26 Standards
Standard Identifier: K-ESS3-3
Grade:
K
Disciplinary Core Idea:
ESS3.C: Human Impacts on Earth Systems, ETS1.B: Developing Possible Solutions
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area:
Earth and Space Science
Title: K-ESS3 Earth and Human Activity
Performance Expectation: Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.* [Clarification Statement: Examples of human impact on the land could include cutting trees to produce paper and using resources to produce bottles. Examples of solutions could include reusing paper and recycling cans and bottles.]
Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things. ETS1.B: Developing Possible Solutions Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (secondary to K-ESS3-3)
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Communicate solutions with others in oral and/or written forms using models and/or drawings that provide detail about scientific ideas.
Crosscutting Concepts: Cause and Effect Events have causes that generate observable patterns.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.K.2: Use a combination of drawing, dictating, and writing to compose informative/explanatory texts in which they name what they are writing about and supply some information about the topic.
DCI Connections:
Connections to other DCIs in kindergarten: K.ETS1.A Articulation across grade-levels: 2.ETS1.B; 4.ESS3.A; 5.ESS3.C
Performance Expectation: Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.* [Clarification Statement: Examples of human impact on the land could include cutting trees to produce paper and using resources to produce bottles. Examples of solutions could include reusing paper and recycling cans and bottles.]
Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things. ETS1.B: Developing Possible Solutions Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (secondary to K-ESS3-3)
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Communicate solutions with others in oral and/or written forms using models and/or drawings that provide detail about scientific ideas.
Crosscutting Concepts: Cause and Effect Events have causes that generate observable patterns.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.K.2: Use a combination of drawing, dictating, and writing to compose informative/explanatory texts in which they name what they are writing about and supply some information about the topic.
DCI Connections:
Connections to other DCIs in kindergarten: K.ETS1.A Articulation across grade-levels: 2.ETS1.B; 4.ESS3.A; 5.ESS3.C
Standard Identifier: 2-PS1-2
Grade:
2
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Physical Science
Title: 2-PS1 Matter and Its Interactions
Performance Expectation: Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.* [Clarification Statement: Examples of properties could include, strength, flexibility, hardness, texture, and absorbency.] [Assessment Boundary: Assessment of quantitative measurements is limited to length.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Different properties are suited to different purposes.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: Cause and Effect Simple tests can be designed to gather evidence to support or refute student ideas about causes. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Every human-made product is designed by applying some knowledge of the natural world and is built using materials derived from the natural world.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.2.8: Describe how reasons support specific points the author makes in a text. W.2.7: Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 5.PS1.A
Performance Expectation: Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.* [Clarification Statement: Examples of properties could include, strength, flexibility, hardness, texture, and absorbency.] [Assessment Boundary: Assessment of quantitative measurements is limited to length.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Different properties are suited to different purposes.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: Cause and Effect Simple tests can be designed to gather evidence to support or refute student ideas about causes. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Every human-made product is designed by applying some knowledge of the natural world and is built using materials derived from the natural world.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.2.8: Describe how reasons support specific points the author makes in a text. W.2.7: Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 5.PS1.A
Standard Identifier: 3-LS4-3
Grade:
3
Disciplinary Core Idea:
LS4.C: Adaptation
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: 3-LS4 Biological Evolution: Unity and Diversity
Performance Expectation: Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. [Clarification Statement: Examples of evidence could include needs and characteristics of the organisms and habitats involved. The organisms and their habitat make up a system in which the parts depend on each other.]
Disciplinary Core Idea(s):
LS4.C: Adaptation For any particular environment, some kinds of organisms survive well, some survive less well, and some cannot survive at all.
Science & Engineering Practices: Engaging in Argument from Evidence Construct an argument with evidence.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.3.1.a–d: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2.a–d: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.1: Write opinion pieces on topics or texts, supporting a point of view with reasons. W.3.2: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. SL.3.4: Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. a. Plan and deliver an informative/explanatory presentation on a topic that: organizes ideas around major points of information, follows a logical sequence, includes supporting details, uses clear and specific vocabulary, and provides a strong conclusion. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.
DCI Connections:
Connections to other DCIs in third grade: 3.ESS2.D Articulation across grade-levels: K.ESS3.A; 2.LS2.A; 2.LS4.D; MS.LS2.A; MS.LS4.B; MS.LS4.C; MS.ESS1.C
Performance Expectation: Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. [Clarification Statement: Examples of evidence could include needs and characteristics of the organisms and habitats involved. The organisms and their habitat make up a system in which the parts depend on each other.]
Disciplinary Core Idea(s):
LS4.C: Adaptation For any particular environment, some kinds of organisms survive well, some survive less well, and some cannot survive at all.
Science & Engineering Practices: Engaging in Argument from Evidence Construct an argument with evidence.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.3.1.a–d: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2.a–d: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.1: Write opinion pieces on topics or texts, supporting a point of view with reasons. W.3.2: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. SL.3.4: Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. a. Plan and deliver an informative/explanatory presentation on a topic that: organizes ideas around major points of information, follows a logical sequence, includes supporting details, uses clear and specific vocabulary, and provides a strong conclusion. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.
DCI Connections:
Connections to other DCIs in third grade: 3.ESS2.D Articulation across grade-levels: K.ESS3.A; 2.LS2.A; 2.LS4.D; MS.LS2.A; MS.LS4.B; MS.LS4.C; MS.ESS1.C
Standard Identifier: 4-ESS2-1
Grade:
4
Disciplinary Core Idea:
ESS2.A: Earth Materials and Systems, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Earth and Space Science
Title: 4-ESS2 Earth’s Systems
Performance Expectation: Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. [Clarification Statement: Examples of variables to test could include angle of slope in the downhill movement of water, amount of vegetation, speed of wind, relative rate of deposition, cycles of freezing and thawing of water, cycles of heating and cooling, and volume of water flow.] [Assessment Boundary: Assessment is limited to a single form of weathering or erosion.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. ESS2.E: Biogeology Living things affect the physical characteristics of their regions.
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 4.MD.A.1: Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1,12), (2, 24), (3,36),... 4.MD.2: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS1.C; 2.ESS2.A; 5.ESS2.A
Performance Expectation: Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. [Clarification Statement: Examples of variables to test could include angle of slope in the downhill movement of water, amount of vegetation, speed of wind, relative rate of deposition, cycles of freezing and thawing of water, cycles of heating and cooling, and volume of water flow.] [Assessment Boundary: Assessment is limited to a single form of weathering or erosion.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. ESS2.E: Biogeology Living things affect the physical characteristics of their regions.
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 4.MD.A.1: Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1,12), (2, 24), (3,36),... 4.MD.2: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS1.C; 2.ESS2.A; 5.ESS2.A
Standard Identifier: 5-ESS2-2
Grade:
5
Disciplinary Core Idea:
ESS2.C: The Roles of Water in Earth's Surface Processes
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-5: Using Mathematics and Computational Thinking
Content Area:
Earth and Space Science
Title: 5-ESS2 Earth’s Systems
Performance Expectation: Describe and graph the amounts of salt water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. [Assessment Boundary: Assessment is limited to oceans, lakes, rivers, glaciers, ground water, and polar ice caps, and does not include the atmosphere.]
Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Nearly all of Earth’s available water is in the ocean. Most fresh water is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere.
Science & Engineering Practices: Using Mathematics and Computational Thinking Describe and graph quantities such as area and volume to address scientific questions.
Crosscutting Concepts: Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight and volume.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.ESS2.C; MS.ESS2.C; MS.ESS3.A
Performance Expectation: Describe and graph the amounts of salt water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. [Assessment Boundary: Assessment is limited to oceans, lakes, rivers, glaciers, ground water, and polar ice caps, and does not include the atmosphere.]
Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Nearly all of Earth’s available water is in the ocean. Most fresh water is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere.
Science & Engineering Practices: Using Mathematics and Computational Thinking Describe and graph quantities such as area and volume to address scientific questions.
Crosscutting Concepts: Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight and volume.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.ESS2.C; MS.ESS2.C; MS.ESS3.A
Standard Identifier: 5-PS1-1
Grade:
5
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Physical Science
Title: 5-PS1 Matter and Its Interactions
Performance Expectation: Develop a model to describe that matter is made of particles too small to be seen. [Clarification Statement: Examples of evidence supporting a model could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects.
Science & Engineering Practices: Developing and Using Models Develop a model to describe phenomena.
Crosscutting Concepts: Scale, Proportion, and Quantity Natural objects exist from the very small to the immensely large.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 5.NBT.2: Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. 5.NF.7.a-c: Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. 5.MD.3.a-b: Recognize volume as an attribute of solid figures and understand concepts of volume measurement. 5.MD.4: Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.PS1.A; MS.PS1.A
Performance Expectation: Develop a model to describe that matter is made of particles too small to be seen. [Clarification Statement: Examples of evidence supporting a model could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects.
Science & Engineering Practices: Developing and Using Models Develop a model to describe phenomena.
Crosscutting Concepts: Scale, Proportion, and Quantity Natural objects exist from the very small to the immensely large.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 5.NBT.2: Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. 5.NF.7.a-c: Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. 5.MD.3.a-b: Recognize volume as an attribute of solid figures and understand concepts of volume measurement. 5.MD.4: Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.PS1.A; MS.PS1.A
Standard Identifier: 5-PS1-2
Grade:
5
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter, PS1.B: Chemical Reactions
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-5: Using Mathematics and Computational Thinking
Content Area:
Physical Science
Title: 5-PS1 Matter and Its Interactions
Performance Expectation: Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. [Clarification Statement: Examples of reactions or changes could include phase changes, dissolving, and mixing that form new substances.] [Assessment Boundary: Assessment does not include distinguishing mass and weight.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. PS1.B: Chemical Reactions No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.)
Science & Engineering Practices: Using Mathematics and Computational Thinking Measure and graph quantities such as weight to address scientific and engineering questions and problems.
Crosscutting Concepts: Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes consistent patterns in natural systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 5.MD.1: Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real-world problems.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.PS1.A; MS.PS1.A
Performance Expectation: Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. [Clarification Statement: Examples of reactions or changes could include phase changes, dissolving, and mixing that form new substances.] [Assessment Boundary: Assessment does not include distinguishing mass and weight.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. PS1.B: Chemical Reactions No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.)
Science & Engineering Practices: Using Mathematics and Computational Thinking Measure and graph quantities such as weight to address scientific and engineering questions and problems.
Crosscutting Concepts: Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes consistent patterns in natural systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 5.MD.1: Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real-world problems.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.PS1.A; MS.PS1.A
Standard Identifier: 5-PS1-3
Grade:
5
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Physical Science
Title: 5-PS1 Matter and Its Interactions
Performance Expectation: Make observations and measurements to identify materials based on their properties. [Clarification Statement: Examples of materials to be identified could include baking soda and other powders, metals, minerals, and liquids. Examples of properties could include color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, and solubility; density is not intended as an identifiable property.] [Assessment Boundary: Assessment does not include density or distinguishing mass and weight.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.)
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon.
Crosscutting Concepts: Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.PS1.A; MS.PS1.A
Performance Expectation: Make observations and measurements to identify materials based on their properties. [Clarification Statement: Examples of materials to be identified could include baking soda and other powders, metals, minerals, and liquids. Examples of properties could include color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, and solubility; density is not intended as an identifiable property.] [Assessment Boundary: Assessment does not include density or distinguishing mass and weight.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.)
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon.
Crosscutting Concepts: Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.PS1.A; MS.PS1.A
Standard Identifier: MS-ESS1-4
Grade Range:
6–8
Disciplinary Core Idea:
ESS1.C: The History of Planet Earth
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: MS-ESS1 Earth’s Place in the Universe
Performance Expectation: Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history. [Clarification Statement: Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth’s history. Examples of Earth’s major events could range from being very recent (such as the last Ice Age or the earliest fossils of homo sapiens) to very old (such as the formation of Earth or the earliest evidence of life). Examples can include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.] [Assessment Boundary: Assessment does not include recalling the names of specific periods or epochs and events within them.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth The geologic time scale interpreted from rock strata provides a way to organize Earth’s history. Analyses of rock strata and the fossil record provide only relative dates, not an absolute scale.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Scale, Proportion, and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. WHST.6-8.2: Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. Mathematics 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS4.A; MS.LS4.C Articulation across grade-bands: 3.LS4.A; 3.LS4.C; 4.ESS1.C; HS.PS1.C; HS.LS4.A; HS.LS4.C; HS.ESS1.C; HS.ESS2.A
Performance Expectation: Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history. [Clarification Statement: Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth’s history. Examples of Earth’s major events could range from being very recent (such as the last Ice Age or the earliest fossils of homo sapiens) to very old (such as the formation of Earth or the earliest evidence of life). Examples can include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.] [Assessment Boundary: Assessment does not include recalling the names of specific periods or epochs and events within them.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth The geologic time scale interpreted from rock strata provides a way to organize Earth’s history. Analyses of rock strata and the fossil record provide only relative dates, not an absolute scale.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Scale, Proportion, and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. WHST.6-8.2: Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. Mathematics 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS4.A; MS.LS4.C Articulation across grade-bands: 3.LS4.A; 3.LS4.C; 4.ESS1.C; HS.PS1.C; HS.LS4.A; HS.LS4.C; HS.ESS1.C; HS.ESS2.A
Standard Identifier: MS-ESS2-2
Grade Range:
6–8
Disciplinary Core Idea:
ESS2.A: Earth Materials and Systems, ESS2.C: The Roles of Water in Earth's Surface Processes
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: MS-ESS2 Earth’s Systems
Performance Expectation: Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales. [Clarification Statement: Emphasis is on how processes change Earth’s surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems The planet’s systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These interactions have shaped Earth’s history and will determine its future. ESS2.C: The Roles of Water in Earth’s Surface Processes Water’s movements—both on the land and underground—cause weathering and erosion, which change the land’s surface features and create underground formations.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe nature operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Scale Proportion and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. WHST.6-8.2.a-f: Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.2: Reason abstractly and quantitatively. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.B; MS.LS2.B Articulation across grade-bands: 4.ESS1.C; 4.ESS2.A; 4.ESS2.E; 5.ESS2.A; HS.PS3.D; HS.LS2.B; HS.ESS1.C; HS.ESS2.A; HS.ESS2.B; HS.ESS2.C; HS.ESS2.D; HS.ESS2.E; HS.ESS3.D
Performance Expectation: Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales. [Clarification Statement: Emphasis is on how processes change Earth’s surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems The planet’s systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These interactions have shaped Earth’s history and will determine its future. ESS2.C: The Roles of Water in Earth’s Surface Processes Water’s movements—both on the land and underground—cause weathering and erosion, which change the land’s surface features and create underground formations.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe nature operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Scale Proportion and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. WHST.6-8.2.a-f: Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.2: Reason abstractly and quantitatively. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.B; MS.LS2.B Articulation across grade-bands: 4.ESS1.C; 4.ESS2.A; 4.ESS2.E; 5.ESS2.A; HS.PS3.D; HS.LS2.B; HS.ESS1.C; HS.ESS2.A; HS.ESS2.B; HS.ESS2.C; HS.ESS2.D; HS.ESS2.E; HS.ESS3.D
Showing 1 - 10 of 26 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881