Science (CA NGSS) Standards
Remove this criterion from the search
Add a Disciplinary Core Idea
Remove this criterion from the search
ESS2.A: Earth Materials and Systems
Remove this criterion from the search
ESS2.B: Plate Tectonics and Large-Scale System Interactions
Remove this criterion from the search
ESS2.D: Weather and Climate
Remove this criterion from the search
ESS3.A: Natural Resources
Remove this criterion from the search
ESS3.B: Natural Hazards
Remove this criterion from the search
ESS3.C: Human Impacts on Earth Systems
Remove this criterion from the search
ESS3.D: Global Climate Change
Remove this criterion from the search
ETS1.B: Developing Possible Solutions
Remove this criterion from the search
LS1.B: Growth and Development of Organisms
Remove this criterion from the search
LS1.C: Organization for Matter and Energy Flow in Organisms
Remove this criterion from the search
LS2.D: Social Interactions and Group Behavior
Remove this criterion from the search
LS3.A: Inheritance of Traits
Remove this criterion from the search
LS4.B: Natural Selection
Remove this criterion from the search
LS4.C: Adaptation
Remove this criterion from the search
LS4.D: Biodiversity and Humans
Remove this criterion from the search
PS1.C: Nuclear Processes
Remove this criterion from the search
PS2.A: Forces and Motion
Remove this criterion from the search
PS2.B: Types of Interactions
Remove this criterion from the search
PS3.B: Conservation of Energy and Energy Transfer
Remove this criterion from the search
PS3.C: Relationship between Energy and Forces
Remove this criterion from the search
PS3.D: Energy in Chemical Processes
Remove this criterion from the search
PS4.A: Wave Properties
Remove this criterion from the search
PS4.C: Information Technologies and Instrumentation
Results
Showing 1 - 10 of 31 Standards
Standard Identifier: K-ESS2-1
Grade:
K
Disciplinary Core Idea:
ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: K-ESS2 Earth’s Systems
Performance Expectation: Use and share observations of local weather conditions to describe patterns over time. [Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of quantitative observations limited to whole numbers and relative measures such as warmer/cooler.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time.
Science & Engineering Practices: Analyzing and Interpreting Data Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Scientists look for patterns and order when making observations about the world.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed, used to describe phenomena, and used as evidence.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.K.7: Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. K.CC.1-3: Know number names and the count sequence. K.MD.1: Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. K.MD.3: Classify objects into given categories; count the number of objects in each category and sort the categories by count. K.CC.4-5: Count to tell the number of objects.
DCI Connections:
Connections to other DCIs in kindergarten: N/A Articulation across grade-levels: 2.ESS2.A; 3.ESS2.D; 4.ESS2.A
Performance Expectation: Use and share observations of local weather conditions to describe patterns over time. [Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of quantitative observations limited to whole numbers and relative measures such as warmer/cooler.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time.
Science & Engineering Practices: Analyzing and Interpreting Data Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Scientists look for patterns and order when making observations about the world.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed, used to describe phenomena, and used as evidence.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.K.7: Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. K.CC.1-3: Know number names and the count sequence. K.MD.1: Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. K.MD.3: Classify objects into given categories; count the number of objects in each category and sort the categories by count. K.CC.4-5: Count to tell the number of objects.
DCI Connections:
Connections to other DCIs in kindergarten: N/A Articulation across grade-levels: 2.ESS2.A; 3.ESS2.D; 4.ESS2.A
Standard Identifier: 2-ESS2-1
Grade:
2
Disciplinary Core Idea:
ESS2.A: Earth Materials and Systems, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: 2-ESS2 Earth’s Systems
Performance Expectation: Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.* [Clarification Statement: Examples of solutions could include different designs of dikes and windbreaks to hold back wind and water, and different designs for using shrubs, grass, and trees to hold back the land.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Wind and water can change the shape of the land. ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (secondary to 2-ESS2-1)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Compare multiple solutions to a problem.
Crosscutting Concepts: Stability and Change Things may change slowly or rapidly. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Developing and using technology has impacts on the natural world. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Scientists study the natural and material world.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.2.3: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. RI.2.9: Compare and contrast the most important points presented by two texts on the same topic. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.5: Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 4.ESS2.B; 5.ESS2.C
Performance Expectation: Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.* [Clarification Statement: Examples of solutions could include different designs of dikes and windbreaks to hold back wind and water, and different designs for using shrubs, grass, and trees to hold back the land.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Wind and water can change the shape of the land. ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (secondary to 2-ESS2-1)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Compare multiple solutions to a problem.
Crosscutting Concepts: Stability and Change Things may change slowly or rapidly. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Developing and using technology has impacts on the natural world. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Scientists study the natural and material world.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.2.3: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. RI.2.9: Compare and contrast the most important points presented by two texts on the same topic. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.5: Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 4.ESS2.B; 5.ESS2.C
Standard Identifier: 2-ESS2-2
Grade:
2
Disciplinary Core Idea:
ESS2.B: Plate Tectonics and Large-Scale System Interactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Earth and Space Science
Title: 2-ESS2 Earth’s Systems
Performance Expectation: Develop a model to represent the shapes and kinds of land and bodies of water in an area. [Assessment Boundary: Assessment does not include quantitative scaling in models.]
Disciplinary Core Idea(s):
ESS2.B: Plate Tectonics and Large-Scale System Interactions Maps show where things are located. One can map the shapes and kinds of land and water in any area.
Science & Engineering Practices: Developing and Using Models Develop a model to represent patterns in the natural world.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.2.5: Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 2.NBT.3: Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 4.ESS2.B; 5.ESS2.C
Performance Expectation: Develop a model to represent the shapes and kinds of land and bodies of water in an area. [Assessment Boundary: Assessment does not include quantitative scaling in models.]
Disciplinary Core Idea(s):
ESS2.B: Plate Tectonics and Large-Scale System Interactions Maps show where things are located. One can map the shapes and kinds of land and water in any area.
Science & Engineering Practices: Developing and Using Models Develop a model to represent patterns in the natural world.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.2.5: Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 2.NBT.3: Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 4.ESS2.B; 5.ESS2.C
Standard Identifier: 3-ESS2-1
Grade:
3
Disciplinary Core Idea:
ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: 3-ESS2 Earth’s Systems
Performance Expectation: Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. [Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.] [Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.
Science & Engineering Practices: Analyzing and Interpreting Data Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.MD.2: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in bar graphs.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ESS2.D; 4.ESS2.A; 5.ESS2.A; MS.ESS2.C; MS.ESS2.D
Performance Expectation: Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. [Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.] [Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.
Science & Engineering Practices: Analyzing and Interpreting Data Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.MD.2: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in bar graphs.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ESS2.D; 4.ESS2.A; 5.ESS2.A; MS.ESS2.C; MS.ESS2.D
Standard Identifier: 3-ESS2-2
Grade:
3
Disciplinary Core Idea:
ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area:
Earth and Space Science
Title: 3-ESS2 Earth’s Systems
Performance Expectation: Obtain and combine information to describe climates in different regions of the world.
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Obtain and combine information from books and other reliable media to explain phenomena.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.9: Compare and contrast the most important points and key details presented in two texts on the same topic. W.3.8: Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: MS.ESS2.C; MS.ESS2.D
Performance Expectation: Obtain and combine information to describe climates in different regions of the world.
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Obtain and combine information from books and other reliable media to explain phenomena.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.9: Compare and contrast the most important points and key details presented in two texts on the same topic. W.3.8: Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: MS.ESS2.C; MS.ESS2.D
Standard Identifier: 3-PS2-2
Grade:
3
Disciplinary Core Idea:
PS2.A: Forces and Motion
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Physical Science
Title: 3-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion. [Clarification Statement: Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, and two children on a see-saw.] [Assessment Boundary: Assessment does not include technical terms such as period and frequency.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion The patterns of an object’s motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.)
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Science findings are based on recognizing patterns.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.3.7: Conduct short research projects that build knowledge about a topic. W.3.8: Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: 1.ESS1.A; 4.PS4.A; MS.PS2.A; MS.ESS1.B
Performance Expectation: Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion. [Clarification Statement: Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, and two children on a see-saw.] [Assessment Boundary: Assessment does not include technical terms such as period and frequency.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion The patterns of an object’s motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.)
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Science findings are based on recognizing patterns.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.3.7: Conduct short research projects that build knowledge about a topic. W.3.8: Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: 1.ESS1.A; 4.PS4.A; MS.PS2.A; MS.ESS1.B
Standard Identifier: 3-PS2-3
Grade:
3
Disciplinary Core Idea:
PS2.B: Types of Interactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Physical Science
Title: 3-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. [Clarification Statement: Examples of an electric force could include the force on hair from an electrically charged balloon and the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paperclips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects strength of the force and how the orientation of magnets affects the direction of the magnetic force.] [Assessment Boundary: Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated based on patterns such as cause and effect relationships.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. RI.3.8: Describe the logical connection between particular sentences and paragraphs in a text (e.g., comparison, cause/effect, first/second/third in a sequence). SL.3.3: Ask and answer questions about information from a speaker, offering appropriate elaboration and detail.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: MS.PS2.B
Performance Expectation: Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. [Clarification Statement: Examples of an electric force could include the force on hair from an electrically charged balloon and the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paperclips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects strength of the force and how the orientation of magnets affects the direction of the magnetic force.] [Assessment Boundary: Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated based on patterns such as cause and effect relationships.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. RI.3.8: Describe the logical connection between particular sentences and paragraphs in a text (e.g., comparison, cause/effect, first/second/third in a sequence). SL.3.3: Ask and answer questions about information from a speaker, offering appropriate elaboration and detail.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: MS.PS2.B
Standard Identifier: 4-ESS2-2
Grade:
4
Disciplinary Core Idea:
ESS2.B: Plate Tectonics and Large-Scale System Interactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: 4-ESS2 Earth’s Systems
Performance Expectation: Analyze and interpret data from maps to describe patterns of Earth’s features. [Clarification Statement: Maps can include topographic maps of Earth’s land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.]
Disciplinary Core Idea(s):
ESS2.B: Plate Tectonics and Large-Scale System Interactions The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of Earth.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to make sense of phenomena using logical reasoning.
Crosscutting Concepts: Patterns Patterns can be used as evidence to support an explanation.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.7: Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears. Mathematics 4.MD.2: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS2.B; 2.ESS2.C; 5.ESS2.C; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Performance Expectation: Analyze and interpret data from maps to describe patterns of Earth’s features. [Clarification Statement: Maps can include topographic maps of Earth’s land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.]
Disciplinary Core Idea(s):
ESS2.B: Plate Tectonics and Large-Scale System Interactions The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of Earth.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to make sense of phenomena using logical reasoning.
Crosscutting Concepts: Patterns Patterns can be used as evidence to support an explanation.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.7: Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears. Mathematics 4.MD.2: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS2.B; 2.ESS2.C; 5.ESS2.C; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Standard Identifier: 4-PS4-1
Grade:
4
Disciplinary Core Idea:
PS4.A: Wave Properties
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Physical Science
Title: 4-PS4 Waves and Their Applications in Technologies for Information Transfer
Performance Expectation: Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move. [Clarification Statement: Examples of models could include diagrams, analogies, and physical models using wire to illustrate wavelength and amplitude of waves.] [Assessment Boundary: Assessment does not include interference effects, electromagnetic waves, non-periodic waves, or quantitative models of amplitude and wavelength.]
Disciplinary Core Idea(s):
PS4.A: Wave Properties Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across the surface of deep water, the water goes up and down in place; there is no net motion in the direction of the wave except when the water meets a beach. (Note: This grade band endpoint was moved from K–2.) Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks).
Science & Engineering Practices: Developing and Using Models Develop a model using an analogy, example, or abstract representation to describe a scientific principle. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science findings are based on recognizing patterns.
Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify natural phenomena.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.4.5: Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.4: Model with mathematics. 4.G.1: Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.
DCI Connections:
Connections to other DCIs in fourth grade: 4.PS3.A ; 4.PS3.B Articulation across grade-levels: MS.PS4.A
Performance Expectation: Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move. [Clarification Statement: Examples of models could include diagrams, analogies, and physical models using wire to illustrate wavelength and amplitude of waves.] [Assessment Boundary: Assessment does not include interference effects, electromagnetic waves, non-periodic waves, or quantitative models of amplitude and wavelength.]
Disciplinary Core Idea(s):
PS4.A: Wave Properties Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across the surface of deep water, the water goes up and down in place; there is no net motion in the direction of the wave except when the water meets a beach. (Note: This grade band endpoint was moved from K–2.) Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks).
Science & Engineering Practices: Developing and Using Models Develop a model using an analogy, example, or abstract representation to describe a scientific principle. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science findings are based on recognizing patterns.
Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify natural phenomena.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.4.5: Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.4: Model with mathematics. 4.G.1: Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.
DCI Connections:
Connections to other DCIs in fourth grade: 4.PS3.A ; 4.PS3.B Articulation across grade-levels: MS.PS4.A
Standard Identifier: 4-PS4-3
Grade:
4
Disciplinary Core Idea:
PS4.C: Information Technologies and Instrumentation, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Physical Science
Title: 4-PS4 Waves and Their Applications in Technologies for Information Transfer
Performance Expectation: Generate and compare multiple solutions that use patterns to transfer information.* [Clarification Statement: Examples of solutions could include drums sending coded information through sound waves, using a grid of 1’s and 0’s representing black and white to send information about a picture, and using Morse code to send text.]
Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digitized form to voice—and vice versa. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (secondary to 4-PS4-3)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.
Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify designed products. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably.
DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; 3.PS2.A; MS.PS4.C; MS.ETS1.B
Performance Expectation: Generate and compare multiple solutions that use patterns to transfer information.* [Clarification Statement: Examples of solutions could include drums sending coded information through sound waves, using a grid of 1’s and 0’s representing black and white to send information about a picture, and using Morse code to send text.]
Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digitized form to voice—and vice versa. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (secondary to 4-PS4-3)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.
Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify designed products. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably.
DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; 3.PS2.A; MS.PS4.C; MS.ETS1.B
Showing 1 - 10 of 31 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881