Science (CA NGSS) Standards
Results
Showing 1 - 10 of 14 Standards
Standard Identifier: K-ESS2-1
Grade:
K
Disciplinary Core Idea:
ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: K-ESS2 Earth’s Systems
Performance Expectation: Use and share observations of local weather conditions to describe patterns over time. [Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of quantitative observations limited to whole numbers and relative measures such as warmer/cooler.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time.
Science & Engineering Practices: Analyzing and Interpreting Data Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Scientists look for patterns and order when making observations about the world.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed, used to describe phenomena, and used as evidence.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.K.7: Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. K.CC.1-3: Know number names and the count sequence. K.MD.1: Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. K.MD.3: Classify objects into given categories; count the number of objects in each category and sort the categories by count. K.CC.4-5: Count to tell the number of objects.
DCI Connections:
Connections to other DCIs in kindergarten: N/A Articulation across grade-levels: 2.ESS2.A; 3.ESS2.D; 4.ESS2.A
Performance Expectation: Use and share observations of local weather conditions to describe patterns over time. [Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of quantitative observations limited to whole numbers and relative measures such as warmer/cooler.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time.
Science & Engineering Practices: Analyzing and Interpreting Data Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Scientists look for patterns and order when making observations about the world.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed, used to describe phenomena, and used as evidence.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.K.7: Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. K.CC.1-3: Know number names and the count sequence. K.MD.1: Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. K.MD.3: Classify objects into given categories; count the number of objects in each category and sort the categories by count. K.CC.4-5: Count to tell the number of objects.
DCI Connections:
Connections to other DCIs in kindergarten: N/A Articulation across grade-levels: 2.ESS2.A; 3.ESS2.D; 4.ESS2.A
Standard Identifier: K-PS2-2
Grade:
K
Disciplinary Core Idea:
PS2.A: Forces and Motion, PS2.B: Types of Interactions, ETS1.A: Defining and Delimiting Engineering Problems
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Physical Science
Title: K-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.* [Clarification Statement: Examples of problems requiring a solution could include having a marble or other object move a certain distance, follow a particular path, and knock down other objects. Examples of solutions could include tools such as a ramp to increase the speed of the object and a structure that would cause an object such as a marble or ball to turn.] [Assessment Boundary: Assessment does not include friction as a mechanism for change in speed.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion Pushes and pulls can have different strengths and directions. Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it. PS2.B: Types of Interactions When objects touch or collide, they push on one another and can change motion. ETS1.A: Defining and Delimiting Engineering Problems A situation that people want to change or create can be approached as a problem to be solved through engineering. Such problems may have many acceptable solutions. (secondary to K-PS2-2)
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: Cause and Effect Simple tests can be designed to gather evidence to support or refute student ideas about causes.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.K.1: With prompting and support, ask and answer questions about key details in a text. SL.K.3: Ask and answer questions in order to seek help, get information, or clarify something that is not understood.
DCI Connections:
Connections to other DCIs in kindergarten: K.ETS1.A; K.ETS1.B Articulation across grade-levels: 2.ETS1.B; 3.PS2.A; 4.ETS1.A
Performance Expectation: Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.* [Clarification Statement: Examples of problems requiring a solution could include having a marble or other object move a certain distance, follow a particular path, and knock down other objects. Examples of solutions could include tools such as a ramp to increase the speed of the object and a structure that would cause an object such as a marble or ball to turn.] [Assessment Boundary: Assessment does not include friction as a mechanism for change in speed.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion Pushes and pulls can have different strengths and directions. Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it. PS2.B: Types of Interactions When objects touch or collide, they push on one another and can change motion. ETS1.A: Defining and Delimiting Engineering Problems A situation that people want to change or create can be approached as a problem to be solved through engineering. Such problems may have many acceptable solutions. (secondary to K-PS2-2)
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data from tests of an object or tool to determine if it works as intended.
Crosscutting Concepts: Cause and Effect Simple tests can be designed to gather evidence to support or refute student ideas about causes.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.K.1: With prompting and support, ask and answer questions about key details in a text. SL.K.3: Ask and answer questions in order to seek help, get information, or clarify something that is not understood.
DCI Connections:
Connections to other DCIs in kindergarten: K.ETS1.A; K.ETS1.B Articulation across grade-levels: 2.ETS1.B; 3.PS2.A; 4.ETS1.A
Standard Identifier: 1-PS4-2
Grade:
1
Disciplinary Core Idea:
PS4.B: Electromagnetic Radiation
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Physical Science
Title: 1-PS4 Waves and their Applications in Technologies for Information Transfer
Performance Expectation: Make observations to construct an evidence-based account that objects can be seen only when illuminated. [Clarification Statement: Examples of observations could include those made in a completely dark room, a pinhole box, and a video of a cave explorer with a flashlight. Illumination could be from an external light source or by an object giving off its own light.]
Disciplinary Core Idea(s):
PS4.B: Electromagnetic Radiation Objects can be seen if light is available to illuminate them or if they give off their own light.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena.
Crosscutting Concepts: Cause and Effect Simple tests can be designed to gather evidence to support or refute student ideas about causes.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.1.2: Write informative/explanatory texts in which they name a topic, supply some facts about the topic, and provide some sense of closure. W.1.7: Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). W.1.8: With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. SL.1.1.a–c: Participate in collaborative conversations with diverse partners about grade 1 topics and texts with peers and adults in small and larger groups.
DCI Connections:
Connections to other DCIs in first grade: N/A Articulation across grade-levels: 4.PS4.B
Performance Expectation: Make observations to construct an evidence-based account that objects can be seen only when illuminated. [Clarification Statement: Examples of observations could include those made in a completely dark room, a pinhole box, and a video of a cave explorer with a flashlight. Illumination could be from an external light source or by an object giving off its own light.]
Disciplinary Core Idea(s):
PS4.B: Electromagnetic Radiation Objects can be seen if light is available to illuminate them or if they give off their own light.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena.
Crosscutting Concepts: Cause and Effect Simple tests can be designed to gather evidence to support or refute student ideas about causes.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.1.2: Write informative/explanatory texts in which they name a topic, supply some facts about the topic, and provide some sense of closure. W.1.7: Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). W.1.8: With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. SL.1.1.a–c: Participate in collaborative conversations with diverse partners about grade 1 topics and texts with peers and adults in small and larger groups.
DCI Connections:
Connections to other DCIs in first grade: N/A Articulation across grade-levels: 4.PS4.B
Standard Identifier: 3-ESS2-1
Grade:
3
Disciplinary Core Idea:
ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: 3-ESS2 Earth’s Systems
Performance Expectation: Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. [Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.] [Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.
Science & Engineering Practices: Analyzing and Interpreting Data Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.MD.2: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in bar graphs.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ESS2.D; 4.ESS2.A; 5.ESS2.A; MS.ESS2.C; MS.ESS2.D
Performance Expectation: Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. [Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.] [Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.
Science & Engineering Practices: Analyzing and Interpreting Data Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.MD.2: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in bar graphs.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ESS2.D; 4.ESS2.A; 5.ESS2.A; MS.ESS2.C; MS.ESS2.D
Standard Identifier: 3-PS2-3
Grade:
3
Disciplinary Core Idea:
PS2.B: Types of Interactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Physical Science
Title: 3-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. [Clarification Statement: Examples of an electric force could include the force on hair from an electrically charged balloon and the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paperclips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects strength of the force and how the orientation of magnets affects the direction of the magnetic force.] [Assessment Boundary: Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated based on patterns such as cause and effect relationships.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. RI.3.8: Describe the logical connection between particular sentences and paragraphs in a text (e.g., comparison, cause/effect, first/second/third in a sequence). SL.3.3: Ask and answer questions about information from a speaker, offering appropriate elaboration and detail.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: MS.PS2.B
Performance Expectation: Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. [Clarification Statement: Examples of an electric force could include the force on hair from an electrically charged balloon and the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paperclips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects strength of the force and how the orientation of magnets affects the direction of the magnetic force.] [Assessment Boundary: Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated based on patterns such as cause and effect relationships.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. RI.3.8: Describe the logical connection between particular sentences and paragraphs in a text (e.g., comparison, cause/effect, first/second/third in a sequence). SL.3.3: Ask and answer questions about information from a speaker, offering appropriate elaboration and detail.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: MS.PS2.B
Standard Identifier: 3-PS2-4
Grade:
3
Disciplinary Core Idea:
PS2.B: Types of Interactions
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Physical Science
Title: 3-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Define a simple design problem that can be solved by applying scientific ideas about magnets.* [Clarification Statement: Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.
Science & Engineering Practices: Asking Questions and Defining Problems Define a simple problem that can be solved through the development of a new or improved object or tool.
Crosscutting Concepts: Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Scientific discoveries about the natural world can often lead to new and improved technologies, which are developed through the Engineering, Technology, and Applications of Science process.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
N/A
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ETS1.A; 4.ETS1.A; MS.PS2.B
Performance Expectation: Define a simple design problem that can be solved by applying scientific ideas about magnets.* [Clarification Statement: Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.
Science & Engineering Practices: Asking Questions and Defining Problems Define a simple problem that can be solved through the development of a new or improved object or tool.
Crosscutting Concepts: Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Scientific discoveries about the natural world can often lead to new and improved technologies, which are developed through the Engineering, Technology, and Applications of Science process.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
N/A
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ETS1.A; 4.ETS1.A; MS.PS2.B
Standard Identifier: MS-PS1-2
Grade Range:
6–8
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter, PS1.B: Chemical Reactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Physical Science
Title: MS-PS1 Matter and Its Interactions
Performance Expectation: Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. [Clarification Statement: Examples of reactions could include burning sugar or steel wool, fat reacting with sodium hydroxide, and mixing zinc with hydrogen chloride.] [Assessment Boundary: Assessment is limited to analysis of the following properties: density, melting point, boiling point, solubility, flammability, and odor.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Patterns Macroscopic patterns are related to the nature of microscopic and atomic-level structure.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Mathematics MP.2: Reason abstractly and quantitatively. 6.RP.3: Use ratio and rate reasoning to solve real-world and mathematical problems. 6.SP.4: Display numerical data in plots on a number line, including dot plots, histograms, and box plots. 6.SP.5.a-d: Summarize numerical data sets in relation to their context.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS3.D; MS.LS1.C; MS.ESS2.A Articulation across grade-bands: 5.PS1.B; HS.PS1.B
Performance Expectation: Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. [Clarification Statement: Examples of reactions could include burning sugar or steel wool, fat reacting with sodium hydroxide, and mixing zinc with hydrogen chloride.] [Assessment Boundary: Assessment is limited to analysis of the following properties: density, melting point, boiling point, solubility, flammability, and odor.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Patterns Macroscopic patterns are related to the nature of microscopic and atomic-level structure.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Mathematics MP.2: Reason abstractly and quantitatively. 6.RP.3: Use ratio and rate reasoning to solve real-world and mathematical problems. 6.SP.4: Display numerical data in plots on a number line, including dot plots, histograms, and box plots. 6.SP.5.a-d: Summarize numerical data sets in relation to their context.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS3.D; MS.LS1.C; MS.ESS2.A Articulation across grade-bands: 5.PS1.B; HS.PS1.B
Standard Identifier: MS-PS1-6
Grade Range:
6–8
Disciplinary Core Idea:
PS1.B: Chemical Reactions, ETS1.B: Developing Possible Solutions, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Physical Science
Title: MS-PS1 Matter and Its Interactions
Performance Expectation: Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.* [Clarification Statement: Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride.] [Assessment Boundary: Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device.]
Disciplinary Core Idea(s):
PS1.B: Chemical Reactions Some chemical reactions release energy, others store energy. ETS1.B: Developing Possible Solutions A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (secondary to MS-PS1-6) ETS1.C: Optimizing the Design Solution Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary to MS-PS1-6) The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary to MS-PS1-6)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints.
Crosscutting Concepts: Energy and Matter The transfer of energy can be tracked as energy flows through a designed or natural system.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS3.D Articulation across grade-bands: HS.PS1.A; HS.PS1.B; HS.PS3.A; HS.PS3.B; HS.PS3.D
Performance Expectation: Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.* [Clarification Statement: Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride.] [Assessment Boundary: Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device.]
Disciplinary Core Idea(s):
PS1.B: Chemical Reactions Some chemical reactions release energy, others store energy. ETS1.B: Developing Possible Solutions A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (secondary to MS-PS1-6) ETS1.C: Optimizing the Design Solution Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary to MS-PS1-6) The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary to MS-PS1-6)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints.
Crosscutting Concepts: Energy and Matter The transfer of energy can be tracked as energy flows through a designed or natural system.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS3.D Articulation across grade-bands: HS.PS1.A; HS.PS1.B; HS.PS3.A; HS.PS3.B; HS.PS3.D
Standard Identifier: MS-PS2-3
Grade Range:
6–8
Disciplinary Core Idea:
PS2.B: Types of Interactions
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Physical Science
Title: MS-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. [Clarification Statement: Examples of devices that use electric and magnetic forces could include electromagnets, electric motors, or generators. Examples of data could include the effect of the number of turns of wire on the strength of an electromagnet, or the effect of increasing the number or strength of magnets on the speed of an electric motor.] [Assessment Boundary: Assessment about questions that require quantitative answers is limited to proportional reasoning and algebraic thinking.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric and magnetic (electromagnetic) forces can be attractive or repulsive, and their sizes depend on the magnitudes of the charges, currents, or magnetic strengths involved and on the distances between the interacting objects.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated within the scope of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles.
Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 3.PS2.B; HS.PS2.B
Performance Expectation: Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. [Clarification Statement: Examples of devices that use electric and magnetic forces could include electromagnets, electric motors, or generators. Examples of data could include the effect of the number of turns of wire on the strength of an electromagnet, or the effect of increasing the number or strength of magnets on the speed of an electric motor.] [Assessment Boundary: Assessment about questions that require quantitative answers is limited to proportional reasoning and algebraic thinking.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric and magnetic (electromagnetic) forces can be attractive or repulsive, and their sizes depend on the magnitudes of the charges, currents, or magnetic strengths involved and on the distances between the interacting objects.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated within the scope of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles.
Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 3.PS2.B; HS.PS2.B
Standard Identifier: HS-ESS1-2
Grade Range:
9–12
Disciplinary Core Idea:
ESS1.A: The Universe and its Stars, PS4.B: Electromagnetic Radiation
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, cycles, and conservation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: HS-ESS1 Earth’s Place in the Universe
Performance Expectation: Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe. [Clarification Statement: Emphasis is on the astronomical evidence of the red shift of light from galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases (from the spectra of electromagnetic radiation from stars), which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).]
Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The study of stars’ light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth. The Big Bang theory is supported by observations of distant galaxies receding from our own, of the measured composition of stars and non-stellar gases, and of the maps of spectra of the primordial radiation (cosmic microwave background) that still fills the universe. Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the process releases electromagnetic energy. Heavier elements are produced when certain massive stars achieve a supernova stage and explode. PS4.B: Electromagnetic Radiation Atoms of each element emit and absorb characteristic frequencies of light. These characteristics allow identification of the presence of an element, even in microscopic quantities. (secondary to HS-ESS1-2)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence.
Crosscutting Concepts: Energy and Matter Energy cannot be created or destroyed–only moved between one place and another place, between objects and/or fields, or between systems. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future. Science assumes the universe is a vast single system in which basic laws are consistent.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-10.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.C; HS.PS3.A; HS.PS3.B; HS.PS4.A Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS1.A
Performance Expectation: Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe. [Clarification Statement: Emphasis is on the astronomical evidence of the red shift of light from galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases (from the spectra of electromagnetic radiation from stars), which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).]
Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The study of stars’ light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth. The Big Bang theory is supported by observations of distant galaxies receding from our own, of the measured composition of stars and non-stellar gases, and of the maps of spectra of the primordial radiation (cosmic microwave background) that still fills the universe. Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the process releases electromagnetic energy. Heavier elements are produced when certain massive stars achieve a supernova stage and explode. PS4.B: Electromagnetic Radiation Atoms of each element emit and absorb characteristic frequencies of light. These characteristics allow identification of the presence of an element, even in microscopic quantities. (secondary to HS-ESS1-2)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence.
Crosscutting Concepts: Energy and Matter Energy cannot be created or destroyed–only moved between one place and another place, between objects and/or fields, or between systems. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future. Science assumes the universe is a vast single system in which basic laws are consistent.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-10.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.C; HS.PS3.A; HS.PS3.B; HS.PS4.A Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS1.A
Showing 1 - 10 of 14 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881