Science (CA NGSS) Standards
Results
Showing 1 - 10 of 12 Standards
Standard Identifier: 2-PS1-1
Grade:
2
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Physical Science
Title: 2-PS1 Matter and Its Interactions
Performance Expectation: Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question.
Crosscutting Concepts: Patterns Patterns in the natural and human designed world can be observed.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.2.7: Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.4: Model with mathematics. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 5.PS1.A
Performance Expectation: Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question.
Crosscutting Concepts: Patterns Patterns in the natural and human designed world can be observed.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.2.7: Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.4: Model with mathematics. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 5.PS1.A
Standard Identifier: 3-PS2-2
Grade:
3
Disciplinary Core Idea:
PS2.A: Forces and Motion
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Physical Science
Title: 3-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion. [Clarification Statement: Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, and two children on a see-saw.] [Assessment Boundary: Assessment does not include technical terms such as period and frequency.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion The patterns of an object’s motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.)
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Science findings are based on recognizing patterns.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.3.7: Conduct short research projects that build knowledge about a topic. W.3.8: Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: 1.ESS1.A; 4.PS4.A; MS.PS2.A; MS.ESS1.B
Performance Expectation: Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion. [Clarification Statement: Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, and two children on a see-saw.] [Assessment Boundary: Assessment does not include technical terms such as period and frequency.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion The patterns of an object’s motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.)
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Science findings are based on recognizing patterns.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.3.7: Conduct short research projects that build knowledge about a topic. W.3.8: Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: 1.ESS1.A; 4.PS4.A; MS.PS2.A; MS.ESS1.B
Standard Identifier: 3-PS2-3
Grade:
3
Disciplinary Core Idea:
PS2.B: Types of Interactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Physical Science
Title: 3-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. [Clarification Statement: Examples of an electric force could include the force on hair from an electrically charged balloon and the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paperclips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects strength of the force and how the orientation of magnets affects the direction of the magnetic force.] [Assessment Boundary: Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated based on patterns such as cause and effect relationships.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. RI.3.8: Describe the logical connection between particular sentences and paragraphs in a text (e.g., comparison, cause/effect, first/second/third in a sequence). SL.3.3: Ask and answer questions about information from a speaker, offering appropriate elaboration and detail.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: MS.PS2.B
Performance Expectation: Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. [Clarification Statement: Examples of an electric force could include the force on hair from an electrically charged balloon and the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paperclips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects strength of the force and how the orientation of magnets affects the direction of the magnetic force.] [Assessment Boundary: Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated based on patterns such as cause and effect relationships.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. RI.3.8: Describe the logical connection between particular sentences and paragraphs in a text (e.g., comparison, cause/effect, first/second/third in a sequence). SL.3.3: Ask and answer questions about information from a speaker, offering appropriate elaboration and detail.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: MS.PS2.B
Standard Identifier: 4-PS4-1
Grade:
4
Disciplinary Core Idea:
PS4.A: Wave Properties
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Physical Science
Title: 4-PS4 Waves and Their Applications in Technologies for Information Transfer
Performance Expectation: Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move. [Clarification Statement: Examples of models could include diagrams, analogies, and physical models using wire to illustrate wavelength and amplitude of waves.] [Assessment Boundary: Assessment does not include interference effects, electromagnetic waves, non-periodic waves, or quantitative models of amplitude and wavelength.]
Disciplinary Core Idea(s):
PS4.A: Wave Properties Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across the surface of deep water, the water goes up and down in place; there is no net motion in the direction of the wave except when the water meets a beach. (Note: This grade band endpoint was moved from K–2.) Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks).
Science & Engineering Practices: Developing and Using Models Develop a model using an analogy, example, or abstract representation to describe a scientific principle. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science findings are based on recognizing patterns.
Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify natural phenomena.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.4.5: Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.4: Model with mathematics. 4.G.1: Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.
DCI Connections:
Connections to other DCIs in fourth grade: 4.PS3.A ; 4.PS3.B Articulation across grade-levels: MS.PS4.A
Performance Expectation: Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move. [Clarification Statement: Examples of models could include diagrams, analogies, and physical models using wire to illustrate wavelength and amplitude of waves.] [Assessment Boundary: Assessment does not include interference effects, electromagnetic waves, non-periodic waves, or quantitative models of amplitude and wavelength.]
Disciplinary Core Idea(s):
PS4.A: Wave Properties Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across the surface of deep water, the water goes up and down in place; there is no net motion in the direction of the wave except when the water meets a beach. (Note: This grade band endpoint was moved from K–2.) Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks).
Science & Engineering Practices: Developing and Using Models Develop a model using an analogy, example, or abstract representation to describe a scientific principle. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science findings are based on recognizing patterns.
Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify natural phenomena.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.4.5: Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.4: Model with mathematics. 4.G.1: Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.
DCI Connections:
Connections to other DCIs in fourth grade: 4.PS3.A ; 4.PS3.B Articulation across grade-levels: MS.PS4.A
Standard Identifier: 4-PS4-3
Grade:
4
Disciplinary Core Idea:
PS4.C: Information Technologies and Instrumentation, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Physical Science
Title: 4-PS4 Waves and Their Applications in Technologies for Information Transfer
Performance Expectation: Generate and compare multiple solutions that use patterns to transfer information.* [Clarification Statement: Examples of solutions could include drums sending coded information through sound waves, using a grid of 1’s and 0’s representing black and white to send information about a picture, and using Morse code to send text.]
Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digitized form to voice—and vice versa. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (secondary to 4-PS4-3)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.
Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify designed products. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably.
DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; 3.PS2.A; MS.PS4.C; MS.ETS1.B
Performance Expectation: Generate and compare multiple solutions that use patterns to transfer information.* [Clarification Statement: Examples of solutions could include drums sending coded information through sound waves, using a grid of 1’s and 0’s representing black and white to send information about a picture, and using Morse code to send text.]
Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digitized form to voice—and vice versa. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (secondary to 4-PS4-3)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.
Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify designed products. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably.
DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; 3.PS2.A; MS.PS4.C; MS.ETS1.B
Standard Identifier: MS-PS1-2
Grade Range:
6–8
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter, PS1.B: Chemical Reactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Physical Science
Title: MS-PS1 Matter and Its Interactions
Performance Expectation: Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. [Clarification Statement: Examples of reactions could include burning sugar or steel wool, fat reacting with sodium hydroxide, and mixing zinc with hydrogen chloride.] [Assessment Boundary: Assessment is limited to analysis of the following properties: density, melting point, boiling point, solubility, flammability, and odor.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Patterns Macroscopic patterns are related to the nature of microscopic and atomic-level structure.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Mathematics MP.2: Reason abstractly and quantitatively. 6.RP.3: Use ratio and rate reasoning to solve real-world and mathematical problems. 6.SP.4: Display numerical data in plots on a number line, including dot plots, histograms, and box plots. 6.SP.5.a-d: Summarize numerical data sets in relation to their context.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS3.D; MS.LS1.C; MS.ESS2.A Articulation across grade-bands: 5.PS1.B; HS.PS1.B
Performance Expectation: Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. [Clarification Statement: Examples of reactions could include burning sugar or steel wool, fat reacting with sodium hydroxide, and mixing zinc with hydrogen chloride.] [Assessment Boundary: Assessment is limited to analysis of the following properties: density, melting point, boiling point, solubility, flammability, and odor.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. PS1.B: Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Patterns Macroscopic patterns are related to the nature of microscopic and atomic-level structure.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Mathematics MP.2: Reason abstractly and quantitatively. 6.RP.3: Use ratio and rate reasoning to solve real-world and mathematical problems. 6.SP.4: Display numerical data in plots on a number line, including dot plots, histograms, and box plots. 6.SP.5.a-d: Summarize numerical data sets in relation to their context.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS3.D; MS.LS1.C; MS.ESS2.A Articulation across grade-bands: 5.PS1.B; HS.PS1.B
Standard Identifier: MS-PS4-1
Grade Range:
6–8
Disciplinary Core Idea:
PS4.A: Wave Properties
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-5: Using Mathematics and Computational Thinking
Content Area:
Physical Science
Title: MS-PS4 Waves and Their Applications in Technologies for Information Transfer
Performance Expectation: Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. [Clarification Statement: Emphasis is on describing waves with both qualitative and quantitative thinking.] [Assessment Boundary: Assessment does not include electromagnetic waves and is limited to standard repeating waves.]
Disciplinary Core Idea(s):
PS4.A: Wave Properties A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude.
Science & Engineering Practices: Using Mathematics and Computational Thinking Use mathematical representations to describe and/or support scientific conclusions and design solutions. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Patterns Graphs and charts can be used to identify patterns in data.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 6.RP.3.a-d: Use ratio and rate reasoning to solve real-world and mathematical problems. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities. 8.F.3: Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 4.PS3.A; 4.PS3.B; 4.PS4.A; HS.PS4.A; HS.PS4.B
Performance Expectation: Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. [Clarification Statement: Emphasis is on describing waves with both qualitative and quantitative thinking.] [Assessment Boundary: Assessment does not include electromagnetic waves and is limited to standard repeating waves.]
Disciplinary Core Idea(s):
PS4.A: Wave Properties A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude.
Science & Engineering Practices: Using Mathematics and Computational Thinking Use mathematical representations to describe and/or support scientific conclusions and design solutions. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Patterns Graphs and charts can be used to identify patterns in data.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 6.RP.3.a-d: Use ratio and rate reasoning to solve real-world and mathematical problems. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities. 8.F.3: Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 4.PS3.A; 4.PS3.B; 4.PS4.A; HS.PS4.A; HS.PS4.B
Standard Identifier: HS-PS1-1
Grade Range:
9–12
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter, PS2.B: Types of Interactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Physical Science
Title: HS-PS1 Matter and Its Interactions
Performance Expectation: Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. [Clarification Statement: Examples of properties that could be predicted from patterns could include reactivity of metals, types of bonds formed, numbers of bonds formed, and reactions with oxygen.] [Assessment Boundary: Assessment is limited to main group elements. Assessment does not include quantitative understanding of ionization energy beyond relative trends.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Each atom has a charged substructure consisting of a nucleus, which is made of protons and neutrons, surrounded by electrons. The periodic table orders elements horizontally by the number of protons in the atom’s nucleus and places those with similar chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states. PS2.B: Types of Interactions Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (secondary to HS-PS1-1)
Science & Engineering Practices: Developing and Using Models Use a model to predict the relationships between systems or between components of a system.
Crosscutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.9-10.7: Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
DCI Connections:
Connections to other DCIs in this grade-band: HS.LS1.C Articulation across grade-bands: MS.PS1.A; MS.PS1.B
Performance Expectation: Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. [Clarification Statement: Examples of properties that could be predicted from patterns could include reactivity of metals, types of bonds formed, numbers of bonds formed, and reactions with oxygen.] [Assessment Boundary: Assessment is limited to main group elements. Assessment does not include quantitative understanding of ionization energy beyond relative trends.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Each atom has a charged substructure consisting of a nucleus, which is made of protons and neutrons, surrounded by electrons. The periodic table orders elements horizontally by the number of protons in the atom’s nucleus and places those with similar chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states. PS2.B: Types of Interactions Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (secondary to HS-PS1-1)
Science & Engineering Practices: Developing and Using Models Use a model to predict the relationships between systems or between components of a system.
Crosscutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.9-10.7: Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
DCI Connections:
Connections to other DCIs in this grade-band: HS.LS1.C Articulation across grade-bands: MS.PS1.A; MS.PS1.B
Standard Identifier: HS-PS1-2
Grade Range:
9–12
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter, PS1.B: Chemical Reactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Physical Science
Title: HS-PS1 Matter and Its Interactions
Performance Expectation: Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. [Clarification Statement: Examples of chemical reactions could include the reaction of sodium and chlorine, of carbon and oxygen, or of carbon and hydrogen.] [Assessment Boundary: Assessment is limited to chemical reactions involving main group elements and combustion reactions.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter The periodic table orders elements horizontally by the number of protons in the atom’s nucleus and places those with similar chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states. PS1.B: Chemical Reactions The fact that atoms are conserved, together with knowledge of the chemical properties of the elements involved, can be used to describe and predict chemical reactions.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy WHST.11-12.2.a-e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.5: Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. Mathematics N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.LS1.C; HS.ESS2.C Articulation across grade-bands: MS.PS1.A; MS.PS1.B
Performance Expectation: Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. [Clarification Statement: Examples of chemical reactions could include the reaction of sodium and chlorine, of carbon and oxygen, or of carbon and hydrogen.] [Assessment Boundary: Assessment is limited to chemical reactions involving main group elements and combustion reactions.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter The periodic table orders elements horizontally by the number of protons in the atom’s nucleus and places those with similar chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states. PS1.B: Chemical Reactions The fact that atoms are conserved, together with knowledge of the chemical properties of the elements involved, can be used to describe and predict chemical reactions.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy WHST.11-12.2.a-e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.5: Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. Mathematics N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.LS1.C; HS.ESS2.C Articulation across grade-bands: MS.PS1.A; MS.PS1.B
Standard Identifier: HS-PS1-3
Grade Range:
9–12
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter, PS2.B: Types of Interactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Physical Science
Title: HS-PS1 Matter and Its Interactions
Performance Expectation: Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles. [Clarification Statement: Emphasis is on understanding the strengths of forces between particles, not on naming specific intermolecular forces (such as dipole-dipole). Examples of particles could include ions, atoms, molecules, and networked materials (such as graphite). Examples of bulk properties of substances could include the melting point and boiling point, vapor pressure, and surface tension.] [Assessment Boundary: Assessment does not include Raoult’s law calculations of vapor pressure.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter The structure and interactions of matter at the bulk scale are determined by electrical forces within and between atoms. PS2.B: Types of Interactions Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (secondary to HS-PS1-3)
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.
Crosscutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.11-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. WHST.11-12.8: Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. WHST.9-12.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS2.C Articulation across grade-bands: MS.PS1.A; MS.PS2.B
Performance Expectation: Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles. [Clarification Statement: Emphasis is on understanding the strengths of forces between particles, not on naming specific intermolecular forces (such as dipole-dipole). Examples of particles could include ions, atoms, molecules, and networked materials (such as graphite). Examples of bulk properties of substances could include the melting point and boiling point, vapor pressure, and surface tension.] [Assessment Boundary: Assessment does not include Raoult’s law calculations of vapor pressure.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter The structure and interactions of matter at the bulk scale are determined by electrical forces within and between atoms. PS2.B: Types of Interactions Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (secondary to HS-PS1-3)
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.
Crosscutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.11-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. WHST.11-12.8: Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. WHST.9-12.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS2.C Articulation across grade-bands: MS.PS1.A; MS.PS2.B
Showing 1 - 10 of 12 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881