Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 31 - 40 of 93 Standards

Standard Identifier: 3-PS2-1

Grade: 3
Disciplinary Core Idea: PS2.A: Forces and Motion, PS2.B: Types of Interactions
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Physical Science

Title: 3-PS2 Motion and Stability: Forces and Interactions

Performance Expectation: Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. [Clarification Statement: Examples could include an unbalanced force on one side of a ball can make it start moving; and, balanced forces pushing on a box from both sides will not produce any motion at all.] [Assessment Boundary: Assessment is limited to one variable at a time: number, size, or direction of forces. Assessment does not include quantitative force size, only qualitative and relative. Assessment is limited to gravity being addressed as a force that pulls objects down.]

Disciplinary Core Idea(s):
PS2.A: Forces and Motion Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object’s speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.) PS2.B: Types of Interactions Objects in contact exert forces on each other.

Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. Connections to Nature of Science: Scientific Investigations Use a Variety of Methods Science investigations use a variety of methods, tools, and techniques.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. W.3.7: Conduct short research projects that build knowledge about a topic. W.3.8: Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. Mathematics MP.2: Reason abstractly and quantitatively. MP.5: Use appropriate tools strategically. 3.MD.2: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem.

DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.PS2.A; K.PS2.B; K.PS3.C; 5.PS2.B; MS.PS2.A; MS.ESS1.B; MS.ESS2.C

Standard Identifier: 3-PS2-2

Grade: 3
Disciplinary Core Idea: PS2.A: Forces and Motion
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Physical Science

Title: 3-PS2 Motion and Stability: Forces and Interactions

Performance Expectation: Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion. [Clarification Statement: Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, and two children on a see-saw.] [Assessment Boundary: Assessment does not include technical terms such as period and frequency.]

Disciplinary Core Idea(s):
PS2.A: Forces and Motion The patterns of an object’s motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.)

Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Science findings are based on recognizing patterns.

Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy W.3.7: Conduct short research projects that build knowledge about a topic. W.3.8: Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories.

DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: 1.ESS1.A; 4.PS4.A; MS.PS2.A; MS.ESS1.B

Standard Identifier: 3-PS2-3

Grade: 3
Disciplinary Core Idea: PS2.B: Types of Interactions
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-1: Asking Questions and Defining Problems
Content Area: Physical Science

Title: 3-PS2 Motion and Stability: Forces and Interactions

Performance Expectation: Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. [Clarification Statement: Examples of an electric force could include the force on hair from an electrically charged balloon and the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paperclips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects strength of the force and how the orientation of magnets affects the direction of the magnetic force.] [Assessment Boundary: Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity.]

Disciplinary Core Idea(s):
PS2.B: Types of Interactions Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.

Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated based on patterns such as cause and effect relationships.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. RI.3.8: Describe the logical connection between particular sentences and paragraphs in a text (e.g., comparison, cause/effect, first/second/third in a sequence). SL.3.3: Ask and answer questions about information from a speaker, offering appropriate elaboration and detail.

DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: MS.PS2.B

Standard Identifier: 4-ESS1-1

Grade: 4
Disciplinary Core Idea: ESS1.C: The History of Planet Earth
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Earth and Space Science

Title: 4-ESS1 Earth’s Place in the Universe

Performance Expectation: Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. [Clarification Statement: Examples of evidence from patterns could include rock layers with marine shell fossils above rock layers with plant fossils and no shells, indicating a change from land to water over time.] [Assessment Boundary: Assessment does not include specific knowledge of the mechanism of rock formation or memorization of specific rock formations and layers. Assessment is limited to relative time.]

Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and location of certain fossil types indicate the order in which rock layers were formed.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Identify the evidence that supports particular points in an explanation.

Crosscutting Concepts: Patterns Patterns can be used as evidence to support an explanation. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes consistent patterns in natural systems.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. W.4.9.a,b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.MD.1: Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1,12), (2,24), (3,36),...

DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS1.C; 3.LS4.A; MS.LS4.A; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B

Standard Identifier: 4-ESS2-1

Grade: 4
Disciplinary Core Idea: ESS2.A: Earth Materials and Systems, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Earth and Space Science

Title: 4-ESS2 Earth’s Systems

Performance Expectation: Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. [Clarification Statement: Examples of variables to test could include angle of slope in the downhill movement of water, amount of vegetation, speed of wind, relative rate of deposition, cycles of freezing and thawing of water, cycles of heating and cooling, and volume of water flow.] [Assessment Boundary: Assessment is limited to a single form of weathering or erosion.]

Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. ESS2.E: Biogeology Living things affect the physical characteristics of their regions.

Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy W4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 4.MD.A.1: Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1,12), (2, 24), (3,36),... 4.MD.2: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.

DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS1.C; 2.ESS2.A; 5.ESS2.A

Standard Identifier: 4-ESS2-2

Grade: 4
Disciplinary Core Idea: ESS2.B: Plate Tectonics and Large-Scale System Interactions
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-4: Analyzing and Interpreting Data
Content Area: Earth and Space Science

Title: 4-ESS2 Earth’s Systems

Performance Expectation: Analyze and interpret data from maps to describe patterns of Earth’s features. [Clarification Statement: Maps can include topographic maps of Earth’s land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.]

Disciplinary Core Idea(s):
ESS2.B: Plate Tectonics and Large-Scale System Interactions The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of Earth.

Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to make sense of phenomena using logical reasoning.

Crosscutting Concepts: Patterns Patterns can be used as evidence to support an explanation.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RI.4.7: Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears. Mathematics 4.MD.2: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.

DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS2.B; 2.ESS2.C; 5.ESS2.C; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B

Standard Identifier: 4-ESS3-1

Grade: 4
Disciplinary Core Idea: ESS3.A: Natural Resources
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area: Earth and Space Science

Title: 4-ESS3 Earth and Human Activity

Performance Expectation: Obtain and combine information to describe that energy and fuels are derived from natural resources and that their uses affect the environment. [Clarification Statement: Examples of renewable energy resources could include wind energy, water behind dams, and sunlight; non-renewable energy resources are fossil fuels and fissile materials. Examples of environmental effects could include loss of habitat due to dams, loss of habitat due to surface mining, and air pollution from burning of fossil fuels.]

Disciplinary Core Idea(s):
ESS3.A: Natural Resources Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not.

Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Obtain and combine information from books and other reliable media to explain phenomena.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering. Influence of Science, Engineering and Technology on Society and the Natural World Over time, people’s needs and wants change, as do their demands for new and improved technologies.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services.

California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. W.4.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.OA.1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.

DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 5.ESS3.C; MS.PS3.D; MS.ESS2.A; MS.ESS3.A; MS.ESS3.C; MS.ESS3.D

Standard Identifier: 4-ESS3-2

Grade: 4
Disciplinary Core Idea: ESS3.B: Natural Hazards, ETS1.B: Developing Possible Solutions
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Earth and Space Science

Title: 4-ESS3 Earth and Human Activity

Performance Expectation: Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.* [Clarification Statement: Examples of solutions could include designing an earthquake resistant building and improving monitoring of volcanic activity.] [Assessment Boundary: Assessment is limited to earthquakes, floods, tsunamis, and volcanic eruptions.]

Disciplinary Core Idea(s):
ESS3.B: Natural Hazards A variety of hazards result from natural processes (e.g., earthquakes, tsunamis, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (Note: This Disciplinary Core Idea can also be found in 3.WC.) ETS1.B: Designing Solutions to Engineering Problems Testing a solution involves investigating how well it performs under a range of likely conditions. (secondary to 4-ESS3-2)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services.

California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.OA.1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.

DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.C Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; MS.ESS2.A; MS.ESS3.B; MS.ETS1.B

Standard Identifier: 4-PS3-4

Grade: 4
Disciplinary Core Idea: PS3.B: Conservation of Energy and Energy Transfer, PS3.D: Energy in Chemical Processes, ETS1.A: Defining and Delimiting Engineering Problems
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: 4-PS3 Energy

Performance Expectation: Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.* [Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound; and, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device.] [Assessment Boundary: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.]

Disciplinary Core Idea(s):
PS3.B: Conservation of Energy and Energy Transfer Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. PS3.D: Energy in Chemical Processes The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use. ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (secondary to 4-PS3-4)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas to solve design problems.

Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones. Connections to Nature of Science: Science is a Human Endeavor Most scientists and engineers work in teams. Science affects everyday life.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. Mathematics 4.OA.3: Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 5.PS3.D; 5.LS1.C; MS.PS3.A; MS.PS3.B; MS.ETS1.B; MS.ETS1.C

Standard Identifier: 4-PS4-1

Grade: 4
Disciplinary Core Idea: PS4.A: Wave Properties
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: 4-PS4 Waves and Their Applications in Technologies for Information Transfer

Performance Expectation: Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move. [Clarification Statement: Examples of models could include diagrams, analogies, and physical models using wire to illustrate wavelength and amplitude of waves.] [Assessment Boundary: Assessment does not include interference effects, electromagnetic waves, non-periodic waves, or quantitative models of amplitude and wavelength.]

Disciplinary Core Idea(s):
PS4.A: Wave Properties Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across the surface of deep water, the water goes up and down in place; there is no net motion in the direction of the wave except when the water meets a beach. (Note: This grade band endpoint was moved from K–2.) Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks).

Science & Engineering Practices: Developing and Using Models Develop a model using an analogy, example, or abstract representation to describe a scientific principle. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science findings are based on recognizing patterns.

Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify natural phenomena.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.4.5: Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.4: Model with mathematics. 4.G.1: Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.

DCI Connections:
Connections to other DCIs in fourth grade: 4.PS3.A ; 4.PS3.B Articulation across grade-levels: MS.PS4.A

Showing 31 - 40 of 93 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881