Science (CA NGSS) Standards
Results
Showing 11 - 20 of 27 Standards
Standard Identifier: MS-LS1-3
Grade Range:
6–8
Disciplinary Core Idea:
LS1.A: Structure and Function
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: MS-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. [Clarification Statement: Emphasis is on the conceptual understanding that cells form tissues and tissues form organs specialized for particular body functions. Examples could include the interaction of subsystems within a system and the normal functioning of those systems.] [Assessment Boundary: Assessment does not include the mechanism of one body system independent of others. Assessment is limited to the circulatory, excretory, digestive, respiratory, muscular, and nervous systems.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions.
Science & Engineering Practices: Engaging in Argument from Evidence Use an oral and written argument supported by evidence to support or refute an explanation or a model for a phenomenon.
Crosscutting Concepts: Systems and System Models Systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. Connections to Nature of Science: Science is a Human Endeavor Scientists and engineers are guided by habits of mind such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RI.6.8: Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.LS1.A
Performance Expectation: Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. [Clarification Statement: Emphasis is on the conceptual understanding that cells form tissues and tissues form organs specialized for particular body functions. Examples could include the interaction of subsystems within a system and the normal functioning of those systems.] [Assessment Boundary: Assessment does not include the mechanism of one body system independent of others. Assessment is limited to the circulatory, excretory, digestive, respiratory, muscular, and nervous systems.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions.
Science & Engineering Practices: Engaging in Argument from Evidence Use an oral and written argument supported by evidence to support or refute an explanation or a model for a phenomenon.
Crosscutting Concepts: Systems and System Models Systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. Connections to Nature of Science: Science is a Human Endeavor Scientists and engineers are guided by habits of mind such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RI.6.8: Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.LS1.A
Standard Identifier: MS-LS1-4
Grade Range:
6–8
Disciplinary Core Idea:
LS1.B: Growth and Development of Organisms
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: MS-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. [Clarification Statement: Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds, and creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.]
Disciplinary Core Idea(s):
LS1.B: Growth and Development of Organisms Animals engage in characteristic behaviors that increase the odds of reproduction. Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction.
Science & Engineering Practices: Engaging in Argument from Evidence Use an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.
Crosscutting Concepts: Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RI.6.8: Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A Articulation across grade-bands: 3.LS1.B; HS.LS2.A; HS.LS2.D
Performance Expectation: Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. [Clarification Statement: Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds, and creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.]
Disciplinary Core Idea(s):
LS1.B: Growth and Development of Organisms Animals engage in characteristic behaviors that increase the odds of reproduction. Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction.
Science & Engineering Practices: Engaging in Argument from Evidence Use an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.
Crosscutting Concepts: Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RI.6.8: Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A Articulation across grade-bands: 3.LS1.B; HS.LS2.A; HS.LS2.D
Standard Identifier: MS-LS4-6
Grade Range:
6–8
Disciplinary Core Idea:
LS4.C: Adaptation
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-5: Using Mathematics and Computational Thinking
Content Area:
Life Science
Title: MS-LS4 Biological Evolution: Unity and Diversity
Performance Expectation: Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time. [Clarification Statement: Emphasis is on using mathematical models, probability statements, and proportional reasoning to support explanations of trends in changes to populations over time.] [Assessment Boundary: Assessment does not include Hardy Weinberg calculations.]
Disciplinary Core Idea(s):
LS4.C: Adaptation Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the distribution of traits in a population changes.
Science & Engineering Practices: Using Mathematics and Computational Thinking Use mathematical representations to support scientific conclusions and design solutions.
Crosscutting Concepts: Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
Mathematics MP.4: Model with mathematics. 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 6.SP.5.a-d: Summarize numerical data sets in relation to their context. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A; MS.LS2.C; MS.LS3.B; MS.ESS1.C Articulation across grade-bands: 3.LS4.C; HS.LS2.A; HS.LS2.C; HS.LS3.B; HS.LS4.B; HS.LS4.C
Performance Expectation: Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time. [Clarification Statement: Emphasis is on using mathematical models, probability statements, and proportional reasoning to support explanations of trends in changes to populations over time.] [Assessment Boundary: Assessment does not include Hardy Weinberg calculations.]
Disciplinary Core Idea(s):
LS4.C: Adaptation Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the distribution of traits in a population changes.
Science & Engineering Practices: Using Mathematics and Computational Thinking Use mathematical representations to support scientific conclusions and design solutions.
Crosscutting Concepts: Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
Mathematics MP.4: Model with mathematics. 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 6.SP.5.a-d: Summarize numerical data sets in relation to their context. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A; MS.LS2.C; MS.LS3.B; MS.ESS1.C Articulation across grade-bands: 3.LS4.C; HS.LS2.A; HS.LS2.C; HS.LS3.B; HS.LS4.B; HS.LS4.C
Standard Identifier: MS-PS2-4
Grade Range:
6–8
Disciplinary Core Idea:
PS2.B: Types of Interactions
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Physical Science
Title: MS-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. [Clarification Statement: Examples of evidence for arguments could include data generated from simulations or digital tools; and charts displaying mass, strength of interaction, distance from the Sun, and orbital periods of objects within the solar system.] [Assessment Boundary: Assessment does not include Newton’s Law of Gravitation or Kepler’s Laws.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Gravitational forces are always attractive. There is a gravitational force between any two masses, but it is very small except when one or both of the objects have large mass—e.g., Earth and the sun.
Science & Engineering Practices: Engaging in Argument from Evidence Construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy and matter flows within systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy WHST.6–8.1.a–e: Write arguments focused on discipline-specific content.
DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS1.A ; MS.ESS1.B ; MS.ESS2.C Articulation across grade-bands: 5.PS2.B ; HS.PS2.B ; HS.ESS1.B
Performance Expectation: Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. [Clarification Statement: Examples of evidence for arguments could include data generated from simulations or digital tools; and charts displaying mass, strength of interaction, distance from the Sun, and orbital periods of objects within the solar system.] [Assessment Boundary: Assessment does not include Newton’s Law of Gravitation or Kepler’s Laws.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Gravitational forces are always attractive. There is a gravitational force between any two masses, but it is very small except when one or both of the objects have large mass—e.g., Earth and the sun.
Science & Engineering Practices: Engaging in Argument from Evidence Construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy and matter flows within systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy WHST.6–8.1.a–e: Write arguments focused on discipline-specific content.
DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS1.A ; MS.ESS1.B ; MS.ESS2.C Articulation across grade-bands: 5.PS2.B ; HS.PS2.B ; HS.ESS1.B
Standard Identifier: MS-PS3-5
Grade Range:
6–8
Disciplinary Core Idea:
PS3.B: Conservation of Energy and Energy Transfer
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Physical Science
Title: MS-PS3 Energy
Performance Expectation: Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. [Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.] [Assessment Boundary: Assessment does not include calculations of energy.]
Disciplinary Core Idea(s):
PS3.B: Conservation of Energy and Energy Transfer When the motion energy of an object changes, there is inevitably some other change in energy at the same time.
Science & Engineering Practices: Engaging in Argument from Evidence Construct, use, and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Energy and Matter Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion).
California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content. Mathematics MP.2: Reason abstractly and quantitatively. 6.RP.1: Understand the concept of ratio and use ratio language to describe a ratio relationship between two quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A Articulation across grade-bands: 4.PS3.C; HS.PS3.A; HS.PS3.B
Performance Expectation: Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. [Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.] [Assessment Boundary: Assessment does not include calculations of energy.]
Disciplinary Core Idea(s):
PS3.B: Conservation of Energy and Energy Transfer When the motion energy of an object changes, there is inevitably some other change in energy at the same time.
Science & Engineering Practices: Engaging in Argument from Evidence Construct, use, and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Energy and Matter Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion).
California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content. Mathematics MP.2: Reason abstractly and quantitatively. 6.RP.1: Understand the concept of ratio and use ratio language to describe a ratio relationship between two quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A Articulation across grade-bands: 4.PS3.C; HS.PS3.A; HS.PS3.B
Standard Identifier: HS-ESS3-6
Grade Range:
9–12
Disciplinary Core Idea:
ESS2.D: Weather and Climate, ESS3.D: Global Climate Change
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-5: Using Mathematics and Computational Thinking
Content Area:
Earth and Space Science
Title: HS-ESS3 Earth and Human Activity
Performance Expectation: Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity. [Clarification Statement: Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations.] [Assessment Boundary: Assessment does not include running computational representations but is limited to using the published results of scientific computational models.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere. (secondary to HS-ESS3-6) ESS3.D: Global Climate Change Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities.
Science & Engineering Practices: Using Mathematics and Computational Thinking Use a computational representation of phenomena or design solutions to describe and/or support claims and/or explanations.
Crosscutting Concepts: Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.LS2.B; HS.LS2.C; HS.LS4.D; HS.ESS2.A Articulation across grade-bands: MS.LS2.C; MS.ESS2.A; MS.ESS2.C; MS.ESS3.C; MS.ESS3.D
Performance Expectation: Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity. [Clarification Statement: Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations.] [Assessment Boundary: Assessment does not include running computational representations but is limited to using the published results of scientific computational models.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere. (secondary to HS-ESS3-6) ESS3.D: Global Climate Change Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities.
Science & Engineering Practices: Using Mathematics and Computational Thinking Use a computational representation of phenomena or design solutions to describe and/or support claims and/or explanations.
Crosscutting Concepts: Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.LS2.B; HS.LS2.C; HS.LS4.D; HS.ESS2.A Articulation across grade-bands: MS.LS2.C; MS.ESS2.A; MS.ESS2.C; MS.ESS3.C; MS.ESS3.D
Standard Identifier: HS-ETS1-4
Grade Range:
9–12
Disciplinary Core Idea:
ETS1.B: Developing Possible Solutions
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-5: Using Mathematics and Computational Thinking
Content Area:
Engineering, Technology, and Applications of Science
Title: HS-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Both physical models and computers can be used in various ways to aid in the Engineering, Technology, and Applications of Science process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs.
Science & Engineering Practices: Using Mathematics and Computational Thinking Use mathematical models and/or computer simulations to predict the effects of a design solution on systems and/or the interactions between systems.
Crosscutting Concepts: Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to HS-ETS1.B: Designing Solutions to Engineering Problems include: Earth and Space Science: HS-ESS3-2; HS-ESS3-4 Life Science: HS-LS2-7; HS-LS4-6 Articulation across grade-bands: MS.ETS1.A ; MS.ETS1.B ; MS.ETS1.C
Performance Expectation: Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Both physical models and computers can be used in various ways to aid in the Engineering, Technology, and Applications of Science process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs.
Science & Engineering Practices: Using Mathematics and Computational Thinking Use mathematical models and/or computer simulations to predict the effects of a design solution on systems and/or the interactions between systems.
Crosscutting Concepts: Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to HS-ETS1.B: Designing Solutions to Engineering Problems include: Earth and Space Science: HS-ESS3-2; HS-ESS3-4 Life Science: HS-LS2-7; HS-LS4-6 Articulation across grade-bands: MS.ETS1.A ; MS.ETS1.B ; MS.ETS1.C
Standard Identifier: HS-LS2-4
Grade Range:
9–12
Disciplinary Core Idea:
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-5: Using Mathematics and Computational Thinking
Content Area:
Life Science
Title: HS-LS2 Ecosystems: Interactions, Energy, and Dynamics
Performance Expectation: Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. [Clarification Statement: Emphasis is on using a mathematical model of stored energy in biomass to describe the transfer of energy from one trophic level to another and that matter and energy are conserved as matter cycles and energy flows through ecosystems. Emphasis is on atoms and molecules such as carbon, oxygen, hydrogen and nitrogen being conserved as they move through an ecosystem.] [Assessment Boundary: Assessment is limited to proportional reasoning to describe the cycling of matter and flow of energy.]
Disciplinary Core Idea(s):
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Plants or algae form the lowest level of the food web. At each link upward in a food web, only a small fraction of the matter consumed at the lower level is transferred upward, to produce growth and release energy in cellular respiration at the higher level. Given this inefficiency, there are generally fewer organisms at higher levels of a food web. Some matter reacts to release energy for life functions, some matter is stored in newly made structures, and much is discarded. The chemical elements that make up the molecules of organisms pass through food webs and into and out of the atmosphere and soil, and they are combined and recombined in different ways. At each link in an ecosystem, matter and energy are conserved.
Science & Engineering Practices: Using Mathematics and Computational Thinking Use mathematical representations of phenomena or design solutions to support claims.
Crosscutting Concepts: Energy and Matter Energy cannot be created or destroyed—it only moves between one place and another place, between objects and/or fields, or between systems.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B; HS.PS3.D Articulation across grade-bands: MS.PS3.D; MS.LS1.C; MS.LS2.B
Performance Expectation: Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. [Clarification Statement: Emphasis is on using a mathematical model of stored energy in biomass to describe the transfer of energy from one trophic level to another and that matter and energy are conserved as matter cycles and energy flows through ecosystems. Emphasis is on atoms and molecules such as carbon, oxygen, hydrogen and nitrogen being conserved as they move through an ecosystem.] [Assessment Boundary: Assessment is limited to proportional reasoning to describe the cycling of matter and flow of energy.]
Disciplinary Core Idea(s):
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Plants or algae form the lowest level of the food web. At each link upward in a food web, only a small fraction of the matter consumed at the lower level is transferred upward, to produce growth and release energy in cellular respiration at the higher level. Given this inefficiency, there are generally fewer organisms at higher levels of a food web. Some matter reacts to release energy for life functions, some matter is stored in newly made structures, and much is discarded. The chemical elements that make up the molecules of organisms pass through food webs and into and out of the atmosphere and soil, and they are combined and recombined in different ways. At each link in an ecosystem, matter and energy are conserved.
Science & Engineering Practices: Using Mathematics and Computational Thinking Use mathematical representations of phenomena or design solutions to support claims.
Crosscutting Concepts: Energy and Matter Energy cannot be created or destroyed—it only moves between one place and another place, between objects and/or fields, or between systems.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B; HS.PS3.D Articulation across grade-bands: MS.PS3.D; MS.LS1.C; MS.LS2.B
Standard Identifier: HS-LS2-8
Grade Range:
9–12
Disciplinary Core Idea:
LS2.D: Social Interactions and Group Behavior
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: HS-LS2 Ecosystems: Interactions, Energy, and Dynamics
Performance Expectation: Evaluate evidence for the role of group behavior on individual and species’ chances to survive and reproduce. [Clarification Statement: Emphasis is on: (1) distinguishing between group and individual behavior, (2) identifying evidence supporting the outcomes of group behavior, and (3) developing logical and reasonable arguments based on evidence. Examples of group behaviors could include flocking, schooling, herding, and cooperative behaviors such as hunting, migrating, and swarming.]
Disciplinary Core Idea(s):
LS2.D: Social Interactions and Group Behavior Group behavior has evolved because membership can increase the chances of survival for individuals and their genetic relatives.
Science & Engineering Practices: Engaging in Argument from Evidence Evaluate the evidence behind currently accepted explanations to determine the merits of arguments. Connections to Nature of Science: Scientific Knowledge is Open to Revision in Light of New Evidence Scientific argumentation is a mode of logical discourse used to clarify the strength of relationships between ideas and evidence that may result in revision of an explanation.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.7: Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. RST.9-10.8: Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. RST.11-12.8.a–e: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS1.B
Performance Expectation: Evaluate evidence for the role of group behavior on individual and species’ chances to survive and reproduce. [Clarification Statement: Emphasis is on: (1) distinguishing between group and individual behavior, (2) identifying evidence supporting the outcomes of group behavior, and (3) developing logical and reasonable arguments based on evidence. Examples of group behaviors could include flocking, schooling, herding, and cooperative behaviors such as hunting, migrating, and swarming.]
Disciplinary Core Idea(s):
LS2.D: Social Interactions and Group Behavior Group behavior has evolved because membership can increase the chances of survival for individuals and their genetic relatives.
Science & Engineering Practices: Engaging in Argument from Evidence Evaluate the evidence behind currently accepted explanations to determine the merits of arguments. Connections to Nature of Science: Scientific Knowledge is Open to Revision in Light of New Evidence Scientific argumentation is a mode of logical discourse used to clarify the strength of relationships between ideas and evidence that may result in revision of an explanation.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.7: Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. RST.9-10.8: Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. RST.11-12.8.a–e: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS1.B
Standard Identifier: HS-LS3-2
Grade Range:
9–12
Disciplinary Core Idea:
LS3.B: Variation of Traits
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: HS-LS3 Heredity: Inheritance and Variation of Traits
Performance Expectation: Make and defend a claim based on evidence that inheritable genetic variations may result from (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors. [Clarification Statement: Emphasis is on using data to support arguments for the way variation occurs.] [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]
Disciplinary Core Idea(s):
LS3.B: Variation of Traits In sexual reproduction, chromosomes can sometimes swap sections during the process of meiosis (cell division), thereby creating new genetic combinations and thus more genetic variation. Although DNA replication is tightly regulated and remarkably accurate, errors do occur and result in mutations, which are also a source of genetic variation. Environmental factors can also cause mutations in genes, and viable mutations are inherited. Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors.
Science & Engineering Practices: Engaging in Argument from Evidence Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9–12.1.a–e: Write arguments focused on discipline-specific content. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS3.A; MS.LS3.B
Performance Expectation: Make and defend a claim based on evidence that inheritable genetic variations may result from (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors. [Clarification Statement: Emphasis is on using data to support arguments for the way variation occurs.] [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]
Disciplinary Core Idea(s):
LS3.B: Variation of Traits In sexual reproduction, chromosomes can sometimes swap sections during the process of meiosis (cell division), thereby creating new genetic combinations and thus more genetic variation. Although DNA replication is tightly regulated and remarkably accurate, errors do occur and result in mutations, which are also a source of genetic variation. Environmental factors can also cause mutations in genes, and viable mutations are inherited. Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors.
Science & Engineering Practices: Engaging in Argument from Evidence Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9–12.1.a–e: Write arguments focused on discipline-specific content. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS3.A; MS.LS3.B
Showing 11 - 20 of 27 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881