Science (CA NGSS) Standards
Results
Showing 1 - 10 of 47 Standards
Standard Identifier: 2-ESS1-1
Grade:
2
Disciplinary Core Idea:
ESS1.C: The History of Planet Earth
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: 2-ESS1 Earth’s Place in the Universe
Performance Expectation: Use information from several sources to provide evidence that Earth events can occur quickly or slowly. [Clarification Statement: Examples of events and timescales could include volcanic explosions and earthquakes, which happen quickly and erosion of rocks, which occurs slowly.] [Assessment Boundary: Assessment does not include quantitative measurements of timescales.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Some events happen very quickly; others occur very slowly, over a time period much longer than one can observe.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Make observations from several sources to construct an evidence-based account for natural phenomena.
Crosscutting Concepts: Stability and Change Things may change slowly or rapidly.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.2.1: Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. RI.2.3: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.7: Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). W.2.8: Recall information from experiences or gather information from provided sources to answer a question. SL.2.2: Recount or describe key ideas or details from a text read aloud or information presented orally or through other media. a. Give and follow three- and four-step oral directions. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 2.NBT.1-4: Understand place value.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 3.LS2.C; 4.ESS1.C; 4.ESS2.A
Performance Expectation: Use information from several sources to provide evidence that Earth events can occur quickly or slowly. [Clarification Statement: Examples of events and timescales could include volcanic explosions and earthquakes, which happen quickly and erosion of rocks, which occurs slowly.] [Assessment Boundary: Assessment does not include quantitative measurements of timescales.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Some events happen very quickly; others occur very slowly, over a time period much longer than one can observe.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Make observations from several sources to construct an evidence-based account for natural phenomena.
Crosscutting Concepts: Stability and Change Things may change slowly or rapidly.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.2.1: Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. RI.2.3: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.7: Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). W.2.8: Recall information from experiences or gather information from provided sources to answer a question. SL.2.2: Recount or describe key ideas or details from a text read aloud or information presented orally or through other media. a. Give and follow three- and four-step oral directions. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 2.NBT.1-4: Understand place value.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 3.LS2.C; 4.ESS1.C; 4.ESS2.A
Standard Identifier: 2-ESS2-1
Grade:
2
Disciplinary Core Idea:
ESS2.A: Earth Materials and Systems, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: 2-ESS2 Earth’s Systems
Performance Expectation: Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.* [Clarification Statement: Examples of solutions could include different designs of dikes and windbreaks to hold back wind and water, and different designs for using shrubs, grass, and trees to hold back the land.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Wind and water can change the shape of the land. ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (secondary to 2-ESS2-1)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Compare multiple solutions to a problem.
Crosscutting Concepts: Stability and Change Things may change slowly or rapidly. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Developing and using technology has impacts on the natural world. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Scientists study the natural and material world.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.2.3: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. RI.2.9: Compare and contrast the most important points presented by two texts on the same topic. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.5: Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 4.ESS2.B; 5.ESS2.C
Performance Expectation: Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.* [Clarification Statement: Examples of solutions could include different designs of dikes and windbreaks to hold back wind and water, and different designs for using shrubs, grass, and trees to hold back the land.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Wind and water can change the shape of the land. ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (secondary to 2-ESS2-1)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Compare multiple solutions to a problem.
Crosscutting Concepts: Stability and Change Things may change slowly or rapidly. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Developing and using technology has impacts on the natural world. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Scientists study the natural and material world.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.2.3: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. RI.2.9: Compare and contrast the most important points presented by two texts on the same topic. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.5: Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 4.ESS2.B; 5.ESS2.C
Standard Identifier: 2-PS1-3
Grade:
2
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Physical Science
Title: 2-PS1 Matter and Its Interactions
Performance Expectation: Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object. [Clarification Statement: Examples of pieces could include blocks, building bricks, or other assorted small objects.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Different properties are suited to different purposes. A great variety of objects can be built up from a small set of pieces.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena.
Crosscutting Concepts: Energy and Matter Objects may break into smaller pieces and be put together into larger pieces, or change shapes.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.2.7: Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). W.2.8: Recall information from experiences or gather information from provided sources to answer a question.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 4.ESS2.A; 5.PS1.A; 5.LS2.A
Performance Expectation: Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object. [Clarification Statement: Examples of pieces could include blocks, building bricks, or other assorted small objects.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Different properties are suited to different purposes. A great variety of objects can be built up from a small set of pieces.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena.
Crosscutting Concepts: Energy and Matter Objects may break into smaller pieces and be put together into larger pieces, or change shapes.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.2.7: Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). W.2.8: Recall information from experiences or gather information from provided sources to answer a question.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 4.ESS2.A; 5.PS1.A; 5.LS2.A
Standard Identifier: 4-PS3-1
Grade:
4
Disciplinary Core Idea:
PS3.A: Definitions of Energy
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Physical Science
Title: 4-PS3 Energy
Performance Expectation: Use evidence to construct an explanation relating the speed of an object to the energy of that object. [Assessment Boundary: Assessment does not include quantitative measures of changes in the speed of an object or on any precise or quantitative definition of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy The faster a given object is moving, the more energy it possesses.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Use evidence (e.g., measurements, observations, patterns) to construct an explanation.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. RI.4.3: Explain events, procedures, ideas, or concepts in a historical, scientific, or technical text, including what happened and why, based on specific information in the text. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. W.4.2.a–d: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. W.4.9: Draw evidence from literary or informational texts to support analysis, reflection, and research.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: MS.PS3.A
Performance Expectation: Use evidence to construct an explanation relating the speed of an object to the energy of that object. [Assessment Boundary: Assessment does not include quantitative measures of changes in the speed of an object or on any precise or quantitative definition of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy The faster a given object is moving, the more energy it possesses.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Use evidence (e.g., measurements, observations, patterns) to construct an explanation.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. RI.4.3: Explain events, procedures, ideas, or concepts in a historical, scientific, or technical text, including what happened and why, based on specific information in the text. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. W.4.2.a–d: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. W.4.9: Draw evidence from literary or informational texts to support analysis, reflection, and research.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: MS.PS3.A
Standard Identifier: 4-PS3-2
Grade:
4
Disciplinary Core Idea:
PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Physical Science
Title: 4-PS3 Energy
Performance Expectation: Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. Light also transfers energy from place to place. Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy.
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: MS.PS3.A; MS.PS3.B; MS.PS4.B
Performance Expectation: Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. Light also transfers energy from place to place. Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy.
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: MS.PS3.A; MS.PS3.B; MS.PS4.B
Standard Identifier: 4-PS3-3
Grade:
4
Disciplinary Core Idea:
PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer, PS3.C: Relationship between Energy and Forces
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Physical Science
Title: 4-PS3 Energy
Performance Expectation: Ask questions and predict outcomes about the changes in energy that occur when objects collide. [Clarification Statement: Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact.] [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. PS3.C: Relationship Between Energy and Forces When objects collide, the contact forces transfer energy so as to change the objects’ motions.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.PS2.B; 3.PS2.A; MS.PS2.A; MS.PS3.A; MS.PS3.B; MS.PS3.C
Performance Expectation: Ask questions and predict outcomes about the changes in energy that occur when objects collide. [Clarification Statement: Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact.] [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. PS3.C: Relationship Between Energy and Forces When objects collide, the contact forces transfer energy so as to change the objects’ motions.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.PS2.B; 3.PS2.A; MS.PS2.A; MS.PS3.A; MS.PS3.B; MS.PS3.C
Standard Identifier: 5-LS1-1
Grade:
5
Disciplinary Core Idea:
LS1.C: Organization for Matter and Energy Flow in Organisms
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: 5-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Support an argument that plants get the materials they need for growth chiefly from air and water. [Clarification Statement: Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil.]
Disciplinary Core Idea(s):
LS1.C: Organization for Matter and Energy Flow in Organisms Plants acquire their material for growth chiefly from air and water.
Science & Engineering Practices: Engaging in Argument from Evidence Support an argument with evidence, data, or a model.
Crosscutting Concepts: Energy and Matter Matter is transported into, out of, and within systems.
California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RI.5.1: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. W.5.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 5.MD.1: Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.
DCI Connections:
Connections to other DCIs in fifth grade: 5.PS1.A Articulation across grade-levels: K.LS1.C; 2.LS2.A; MS.LS1.C
Performance Expectation: Support an argument that plants get the materials they need for growth chiefly from air and water. [Clarification Statement: Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil.]
Disciplinary Core Idea(s):
LS1.C: Organization for Matter and Energy Flow in Organisms Plants acquire their material for growth chiefly from air and water.
Science & Engineering Practices: Engaging in Argument from Evidence Support an argument with evidence, data, or a model.
Crosscutting Concepts: Energy and Matter Matter is transported into, out of, and within systems.
California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RI.5.1: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. W.5.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 5.MD.1: Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.
DCI Connections:
Connections to other DCIs in fifth grade: 5.PS1.A Articulation across grade-levels: K.LS1.C; 2.LS2.A; MS.LS1.C
Standard Identifier: 5-PS3-1
Grade:
5
Disciplinary Core Idea:
PS3.D: Energy in Chemical Processes, LS1.C: Organization for Matter and Energy Flow in Organisms
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Physical Science
Title: 5-PS3 Energy
Performance Expectation: Use models to describe that energy in animals’ food (used for body repair, growth, and motion, and to maintain body warmth) was once energy from the sun. [Clarification Statement: Examples of models could include diagrams, and flow charts.]
Disciplinary Core Idea(s):
PS3.D: Energy in Chemical Processes The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). LS1.C: Organization for Matter and Energy Flow in Organisms Food provides animals with the materials they need for body repair and growth and the energy they need to maintain body warmth and for motion. (secondary to 5-PS3-1)
Science & Engineering Practices: Developing and Using Models Use models to describe phenomena.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: K.LS1.C; 2.LS2.A; 4.PS3.A; 4.PS3.B; 4.PS3.D; MS.PS3.D; MS.PS4.B; MS.LS1.C; MS.LS2.B
Performance Expectation: Use models to describe that energy in animals’ food (used for body repair, growth, and motion, and to maintain body warmth) was once energy from the sun. [Clarification Statement: Examples of models could include diagrams, and flow charts.]
Disciplinary Core Idea(s):
PS3.D: Energy in Chemical Processes The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). LS1.C: Organization for Matter and Energy Flow in Organisms Food provides animals with the materials they need for body repair and growth and the energy they need to maintain body warmth and for motion. (secondary to 5-PS3-1)
Science & Engineering Practices: Developing and Using Models Use models to describe phenomena.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: K.LS1.C; 2.LS2.A; 4.PS3.A; 4.PS3.B; 4.PS3.D; MS.PS3.D; MS.PS4.B; MS.LS1.C; MS.LS2.B
Standard Identifier: MS-ESS2-1
Grade Range:
6–8
Disciplinary Core Idea:
ESS2.A: Earth Materials and Systems
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Earth and Space Science
Title: MS-ESS2 Earth’s Systems
Performance Expectation: Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process. [Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth’s materials.] [Assessment Boundary: Assessment does not include the identification and naming of minerals.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems All Earth processes are the result of energy flowing and matter cycling within and among the planet’s systems. This energy is derived from the sun and Earth’s hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth’s materials and living organisms.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Stability and Change Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and processes at different scales, including the atomic scale.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS1.B; MS.PS3.B; MS.LS2.B; MS.LS2.C; MS.ESS1.B; MS.ESS3.C Articulation across grade-bands: 4.PS3.B; 4.ESS2.A; 5.ESS2.A; HS.PS1.B; HS.PS3.B; HS.LS1.C; HS.LS2.B; HS.ESS2.A; HS.ESS2.C; HS.ESS2.E
Performance Expectation: Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process. [Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth’s materials.] [Assessment Boundary: Assessment does not include the identification and naming of minerals.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems All Earth processes are the result of energy flowing and matter cycling within and among the planet’s systems. This energy is derived from the sun and Earth’s hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth’s materials and living organisms.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Stability and Change Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and processes at different scales, including the atomic scale.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS1.B; MS.PS3.B; MS.LS2.B; MS.LS2.C; MS.ESS1.B; MS.ESS3.C Articulation across grade-bands: 4.PS3.B; 4.ESS2.A; 5.ESS2.A; HS.PS1.B; HS.PS3.B; HS.LS1.C; HS.LS2.B; HS.ESS2.A; HS.ESS2.C; HS.ESS2.E
Standard Identifier: MS-ESS2-4
Grade Range:
6–8
Disciplinary Core Idea:
ESS2.C: The Roles of Water in Earth's Surface Processes
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Earth and Space Science
Title: MS-ESS2 Earth’s Systems
Performance Expectation: Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity. [Clarification Statement: Emphasis is on the ways water changes its state as it moves through the multiple pathways of the hydrologic cycle. Examples of models can be conceptual or physical.] [Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.]
Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Water continually cycles among land, ocean, and atmosphere via transpiration, evaporation, condensation and crystallization, and precipitation, as well as downhill flows on land. Global movements of water and its changes in form are propelled by sunlight and gravity.
Science & Engineering Practices: Developing and Using Models Develop a model to describe unobservable mechanisms.
Crosscutting Concepts: Energy and Matter Within a natural or designed system, the transfer of energy drives the motion and/or cycling of matter.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
N/A
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS2.B; MS.PS3.A; MS.PS3.D Articulation across grade-bands: 3.PS2.A; 4.PS3.B; 5.PS2.B; 5.ESS2.C; HS.PS2.B; HS.PS3.B; HS.PS3.D; HS.PS4.B; HS.ESS2.A; HS.ESS2.C; HS.ESS2.D
Performance Expectation: Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity. [Clarification Statement: Emphasis is on the ways water changes its state as it moves through the multiple pathways of the hydrologic cycle. Examples of models can be conceptual or physical.] [Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.]
Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Water continually cycles among land, ocean, and atmosphere via transpiration, evaporation, condensation and crystallization, and precipitation, as well as downhill flows on land. Global movements of water and its changes in form are propelled by sunlight and gravity.
Science & Engineering Practices: Developing and Using Models Develop a model to describe unobservable mechanisms.
Crosscutting Concepts: Energy and Matter Within a natural or designed system, the transfer of energy drives the motion and/or cycling of matter.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
N/A
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS2.B; MS.PS3.A; MS.PS3.D Articulation across grade-bands: 3.PS2.A; 4.PS3.B; 5.PS2.B; 5.ESS2.C; HS.PS2.B; HS.PS3.B; HS.PS3.D; HS.PS4.B; HS.ESS2.A; HS.ESS2.C; HS.ESS2.D
Showing 1 - 10 of 47 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881