Science (CA NGSS) Standards
Results
Showing 1 - 5 of 5 Standards
Standard Identifier: 5-ESS1-1
Grade:
5
Disciplinary Core Idea:
ESS1.A: The Universe and its Stars
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Earth and Space Science
Title: 5-ESS1 Earth’s Place in the Universe
Performance Expectation: Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from Earth. [Clarification Statement: Absolute brightness of stars is the result of a variety factors. Relative distance from Earth is one factor that affects apparent brightness and is the one selected to be addressed by the performance expectation.] [Assessment Boundary: Assessment is limited to relative distances, not sizes, of stars. Assessment does not include other factors that affect apparent brightness (such as stellar masses, age, stage).]
Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The sun is a star that appears larger and brighter than other stars because it is closer. Stars range greatly in their distance from Earth.
Science & Engineering Practices: Engaging in Argument from Evidence Support an argument with evidence, data, or a model.
Crosscutting Concepts: Scale, Proportion, and Quantity Natural objects exist from the very small to the immensely large.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.5.1.a-d: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. RI.5.8: Explain how an author uses reasons and evidence to support particular points in a text, identifying which reasons and evidence support which point(s). RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. W.5.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 5.NBT.2: Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: MS.ESS1.A; MS.ESS1.B
Performance Expectation: Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from Earth. [Clarification Statement: Absolute brightness of stars is the result of a variety factors. Relative distance from Earth is one factor that affects apparent brightness and is the one selected to be addressed by the performance expectation.] [Assessment Boundary: Assessment is limited to relative distances, not sizes, of stars. Assessment does not include other factors that affect apparent brightness (such as stellar masses, age, stage).]
Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The sun is a star that appears larger and brighter than other stars because it is closer. Stars range greatly in their distance from Earth.
Science & Engineering Practices: Engaging in Argument from Evidence Support an argument with evidence, data, or a model.
Crosscutting Concepts: Scale, Proportion, and Quantity Natural objects exist from the very small to the immensely large.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.5.1.a-d: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. RI.5.8: Explain how an author uses reasons and evidence to support particular points in a text, identifying which reasons and evidence support which point(s). RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. W.5.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 5.NBT.2: Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: MS.ESS1.A; MS.ESS1.B
Standard Identifier: MS-ESS1-3
Grade Range:
6–8
Disciplinary Core Idea:
ESS1.B: Earth and the Solar System
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: MS-ESS1 Earth’s Place in the Universe
Performance Expectation: Analyze and interpret data to determine scale properties of objects in the solar system. [Clarification Statement: Emphasis is on the analysis of data from Earth-based instruments, space-based telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object’s layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system bodies.]
Disciplinary Core Idea(s):
ESS1.B: Earth and the Solar System The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings.
Crosscutting Concepts: Scale, Proportion, and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Engineering advances have led to important discoveries in virtually every field of science and scientific discoveries have led to the development of entire industries and engineered systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Mathematics MP.2: Reason abstractly and quantitatively. 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was one beak." "For every vote candidate A received, candidate C received nearly three votes." 7.RP.2.a-d: Recognize and represent proportional relationships between quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS2.A Articulation across grade-bands: 5.ESS1.B; HS.ESS1.B; HS.ESS2.A
Performance Expectation: Analyze and interpret data to determine scale properties of objects in the solar system. [Clarification Statement: Emphasis is on the analysis of data from Earth-based instruments, space-based telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object’s layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system bodies.]
Disciplinary Core Idea(s):
ESS1.B: Earth and the Solar System The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings.
Crosscutting Concepts: Scale, Proportion, and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Engineering advances have led to important discoveries in virtually every field of science and scientific discoveries have led to the development of entire industries and engineered systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Mathematics MP.2: Reason abstractly and quantitatively. 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was one beak." "For every vote candidate A received, candidate C received nearly three votes." 7.RP.2.a-d: Recognize and represent proportional relationships between quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS2.A Articulation across grade-bands: 5.ESS1.B; HS.ESS1.B; HS.ESS2.A
Standard Identifier: MS-ESS1-4
Grade Range:
6–8
Disciplinary Core Idea:
ESS1.C: The History of Planet Earth
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: MS-ESS1 Earth’s Place in the Universe
Performance Expectation: Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history. [Clarification Statement: Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth’s history. Examples of Earth’s major events could range from being very recent (such as the last Ice Age or the earliest fossils of homo sapiens) to very old (such as the formation of Earth or the earliest evidence of life). Examples can include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.] [Assessment Boundary: Assessment does not include recalling the names of specific periods or epochs and events within them.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth The geologic time scale interpreted from rock strata provides a way to organize Earth’s history. Analyses of rock strata and the fossil record provide only relative dates, not an absolute scale.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Scale, Proportion, and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. WHST.6-8.2: Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. Mathematics 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS4.A; MS.LS4.C Articulation across grade-bands: 3.LS4.A; 3.LS4.C; 4.ESS1.C; HS.PS1.C; HS.LS4.A; HS.LS4.C; HS.ESS1.C; HS.ESS2.A
Performance Expectation: Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history. [Clarification Statement: Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth’s history. Examples of Earth’s major events could range from being very recent (such as the last Ice Age or the earliest fossils of homo sapiens) to very old (such as the formation of Earth or the earliest evidence of life). Examples can include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.] [Assessment Boundary: Assessment does not include recalling the names of specific periods or epochs and events within them.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth The geologic time scale interpreted from rock strata provides a way to organize Earth’s history. Analyses of rock strata and the fossil record provide only relative dates, not an absolute scale.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Scale, Proportion, and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. WHST.6-8.2: Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. Mathematics 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS4.A; MS.LS4.C Articulation across grade-bands: 3.LS4.A; 3.LS4.C; 4.ESS1.C; HS.PS1.C; HS.LS4.A; HS.LS4.C; HS.ESS1.C; HS.ESS2.A
Standard Identifier: MS-ESS2-2
Grade Range:
6–8
Disciplinary Core Idea:
ESS2.A: Earth Materials and Systems, ESS2.C: The Roles of Water in Earth's Surface Processes
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: MS-ESS2 Earth’s Systems
Performance Expectation: Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales. [Clarification Statement: Emphasis is on how processes change Earth’s surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems The planet’s systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These interactions have shaped Earth’s history and will determine its future. ESS2.C: The Roles of Water in Earth’s Surface Processes Water’s movements—both on the land and underground—cause weathering and erosion, which change the land’s surface features and create underground formations.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe nature operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Scale Proportion and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. WHST.6-8.2.a-f: Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.2: Reason abstractly and quantitatively. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.B; MS.LS2.B Articulation across grade-bands: 4.ESS1.C; 4.ESS2.A; 4.ESS2.E; 5.ESS2.A; HS.PS3.D; HS.LS2.B; HS.ESS1.C; HS.ESS2.A; HS.ESS2.B; HS.ESS2.C; HS.ESS2.D; HS.ESS2.E; HS.ESS3.D
Performance Expectation: Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales. [Clarification Statement: Emphasis is on how processes change Earth’s surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems The planet’s systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These interactions have shaped Earth’s history and will determine its future. ESS2.C: The Roles of Water in Earth’s Surface Processes Water’s movements—both on the land and underground—cause weathering and erosion, which change the land’s surface features and create underground formations.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe nature operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Scale Proportion and Quantity Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. WHST.6-8.2.a-f: Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.2: Reason abstractly and quantitatively. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.B; MS.LS2.B Articulation across grade-bands: 4.ESS1.C; 4.ESS2.A; 4.ESS2.E; 5.ESS2.A; HS.PS3.D; HS.LS2.B; HS.ESS1.C; HS.ESS2.A; HS.ESS2.B; HS.ESS2.C; HS.ESS2.D; HS.ESS2.E; HS.ESS3.D
Standard Identifier: HS-ESS1-2
Grade Range:
9–12
Disciplinary Core Idea:
ESS1.A: The Universe and its Stars, PS4.B: Electromagnetic Radiation
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, cycles, and conservation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: HS-ESS1 Earth’s Place in the Universe
Performance Expectation: Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe. [Clarification Statement: Emphasis is on the astronomical evidence of the red shift of light from galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases (from the spectra of electromagnetic radiation from stars), which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).]
Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The study of stars’ light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth. The Big Bang theory is supported by observations of distant galaxies receding from our own, of the measured composition of stars and non-stellar gases, and of the maps of spectra of the primordial radiation (cosmic microwave background) that still fills the universe. Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the process releases electromagnetic energy. Heavier elements are produced when certain massive stars achieve a supernova stage and explode. PS4.B: Electromagnetic Radiation Atoms of each element emit and absorb characteristic frequencies of light. These characteristics allow identification of the presence of an element, even in microscopic quantities. (secondary to HS-ESS1-2)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence.
Crosscutting Concepts: Energy and Matter Energy cannot be created or destroyed–only moved between one place and another place, between objects and/or fields, or between systems. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future. Science assumes the universe is a vast single system in which basic laws are consistent.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-10.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.C; HS.PS3.A; HS.PS3.B; HS.PS4.A Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS1.A
Performance Expectation: Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe. [Clarification Statement: Emphasis is on the astronomical evidence of the red shift of light from galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases (from the spectra of electromagnetic radiation from stars), which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).]
Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The study of stars’ light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth. The Big Bang theory is supported by observations of distant galaxies receding from our own, of the measured composition of stars and non-stellar gases, and of the maps of spectra of the primordial radiation (cosmic microwave background) that still fills the universe. Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the process releases electromagnetic energy. Heavier elements are produced when certain massive stars achieve a supernova stage and explode. PS4.B: Electromagnetic Radiation Atoms of each element emit and absorb characteristic frequencies of light. These characteristics allow identification of the presence of an element, even in microscopic quantities. (secondary to HS-ESS1-2)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence.
Crosscutting Concepts: Energy and Matter Energy cannot be created or destroyed–only moved between one place and another place, between objects and/or fields, or between systems. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future. Science assumes the universe is a vast single system in which basic laws are consistent.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-10.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.C; HS.PS3.A; HS.PS3.B; HS.PS4.A Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS1.A
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881