Science (CA NGSS) Standards
Results
Showing 1 - 10 of 26 Standards
Standard Identifier: K-ESS2-1
Grade:
K
Disciplinary Core Idea:
ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: K-ESS2 Earth’s Systems
Performance Expectation: Use and share observations of local weather conditions to describe patterns over time. [Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of quantitative observations limited to whole numbers and relative measures such as warmer/cooler.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time.
Science & Engineering Practices: Analyzing and Interpreting Data Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Scientists look for patterns and order when making observations about the world.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed, used to describe phenomena, and used as evidence.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.K.7: Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. K.CC.1-3: Know number names and the count sequence. K.MD.1: Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. K.MD.3: Classify objects into given categories; count the number of objects in each category and sort the categories by count. K.CC.4-5: Count to tell the number of objects.
DCI Connections:
Connections to other DCIs in kindergarten: N/A Articulation across grade-levels: 2.ESS2.A; 3.ESS2.D; 4.ESS2.A
Performance Expectation: Use and share observations of local weather conditions to describe patterns over time. [Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of quantitative observations limited to whole numbers and relative measures such as warmer/cooler.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time.
Science & Engineering Practices: Analyzing and Interpreting Data Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Scientists look for patterns and order when making observations about the world.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed, used to describe phenomena, and used as evidence.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.K.7: Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. K.CC.1-3: Know number names and the count sequence. K.MD.1: Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. K.MD.3: Classify objects into given categories; count the number of objects in each category and sort the categories by count. K.CC.4-5: Count to tell the number of objects.
DCI Connections:
Connections to other DCIs in kindergarten: N/A Articulation across grade-levels: 2.ESS2.A; 3.ESS2.D; 4.ESS2.A
Standard Identifier: 1-ESS1-1
Grade:
1
Disciplinary Core Idea:
ESS1.A: The Universe and its Stars
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: 1-ESS1 Earth’s Place in the Universe
Performance Expectation: Use observations of the sun, moon, and stars to describe patterns that can be predicted. [Clarification Statement: Examples of patterns could include that the sun and moon appear to rise in one part of the sky, move across the sky, and set; and stars other than our sun are visible at night but not during the day.] [Assessment Boundary: Assessment of star patterns is limited to stars being seen at night and not during the day.]
Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted.
Science & Engineering Practices: Analyzing and Interpreting Data Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes natural events happen today as they happened in the past. Many events are repeated.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.1.7: Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). W.1.8: With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question.
DCI Connections:
Connections to other DCIs in first grade: N/A Articulation across grade-levels: 3.PS2.A; 5.PS2.B; 5-ESS1.B
Performance Expectation: Use observations of the sun, moon, and stars to describe patterns that can be predicted. [Clarification Statement: Examples of patterns could include that the sun and moon appear to rise in one part of the sky, move across the sky, and set; and stars other than our sun are visible at night but not during the day.] [Assessment Boundary: Assessment of star patterns is limited to stars being seen at night and not during the day.]
Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted.
Science & Engineering Practices: Analyzing and Interpreting Data Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions.
Crosscutting Concepts: Patterns Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes natural events happen today as they happened in the past. Many events are repeated.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.1.7: Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). W.1.8: With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question.
DCI Connections:
Connections to other DCIs in first grade: N/A Articulation across grade-levels: 3.PS2.A; 5.PS2.B; 5-ESS1.B
Standard Identifier: 2-ESS1-1
Grade:
2
Disciplinary Core Idea:
ESS1.C: The History of Planet Earth
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: 2-ESS1 Earth’s Place in the Universe
Performance Expectation: Use information from several sources to provide evidence that Earth events can occur quickly or slowly. [Clarification Statement: Examples of events and timescales could include volcanic explosions and earthquakes, which happen quickly and erosion of rocks, which occurs slowly.] [Assessment Boundary: Assessment does not include quantitative measurements of timescales.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Some events happen very quickly; others occur very slowly, over a time period much longer than one can observe.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Make observations from several sources to construct an evidence-based account for natural phenomena.
Crosscutting Concepts: Stability and Change Things may change slowly or rapidly.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.2.1: Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. RI.2.3: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.7: Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). W.2.8: Recall information from experiences or gather information from provided sources to answer a question. SL.2.2: Recount or describe key ideas or details from a text read aloud or information presented orally or through other media. a. Give and follow three- and four-step oral directions. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 2.NBT.1-4: Understand place value.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 3.LS2.C; 4.ESS1.C; 4.ESS2.A
Performance Expectation: Use information from several sources to provide evidence that Earth events can occur quickly or slowly. [Clarification Statement: Examples of events and timescales could include volcanic explosions and earthquakes, which happen quickly and erosion of rocks, which occurs slowly.] [Assessment Boundary: Assessment does not include quantitative measurements of timescales.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Some events happen very quickly; others occur very slowly, over a time period much longer than one can observe.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Make observations from several sources to construct an evidence-based account for natural phenomena.
Crosscutting Concepts: Stability and Change Things may change slowly or rapidly.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.2.1: Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. RI.2.3: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. W.2.7: Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). W.2.8: Recall information from experiences or gather information from provided sources to answer a question. SL.2.2: Recount or describe key ideas or details from a text read aloud or information presented orally or through other media. a. Give and follow three- and four-step oral directions. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 2.NBT.1-4: Understand place value.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 3.LS2.C; 4.ESS1.C; 4.ESS2.A
Standard Identifier: 2-ESS2-1
Grade:
2
Disciplinary Core Idea:
ESS2.A: Earth Materials and Systems, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: 2-ESS2 Earth’s Systems
Performance Expectation: Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.* [Clarification Statement: Examples of solutions could include different designs of dikes and windbreaks to hold back wind and water, and different designs for using shrubs, grass, and trees to hold back the land.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Wind and water can change the shape of the land. ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (secondary to 2-ESS2-1)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Compare multiple solutions to a problem.
Crosscutting Concepts: Stability and Change Things may change slowly or rapidly. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Developing and using technology has impacts on the natural world. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Scientists study the natural and material world.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.2.3: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. RI.2.9: Compare and contrast the most important points presented by two texts on the same topic. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.5: Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 4.ESS2.B; 5.ESS2.C
Performance Expectation: Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.* [Clarification Statement: Examples of solutions could include different designs of dikes and windbreaks to hold back wind and water, and different designs for using shrubs, grass, and trees to hold back the land.]
Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Wind and water can change the shape of the land. ETS1.C: Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (secondary to 2-ESS2-1)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Compare multiple solutions to a problem.
Crosscutting Concepts: Stability and Change Things may change slowly or rapidly. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Developing and using technology has impacts on the natural world. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Scientists study the natural and material world.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.2.3: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. RI.2.9: Compare and contrast the most important points presented by two texts on the same topic. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 2.MD.5: Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 4.ESS2.B; 5.ESS2.C
Standard Identifier: 3-ESS2-1
Grade:
3
Disciplinary Core Idea:
ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: 3-ESS2 Earth’s Systems
Performance Expectation: Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. [Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.] [Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.
Science & Engineering Practices: Analyzing and Interpreting Data Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.MD.2: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in bar graphs.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ESS2.D; 4.ESS2.A; 5.ESS2.A; MS.ESS2.C; MS.ESS2.D
Performance Expectation: Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. [Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.] [Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.
Science & Engineering Practices: Analyzing and Interpreting Data Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.MD.2: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in bar graphs.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.ESS2.D; 4.ESS2.A; 5.ESS2.A; MS.ESS2.C; MS.ESS2.D
Standard Identifier: 4-ESS1-1
Grade:
4
Disciplinary Core Idea:
ESS1.C: The History of Planet Earth
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: 4-ESS1 Earth’s Place in the Universe
Performance Expectation: Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. [Clarification Statement: Examples of evidence from patterns could include rock layers with marine shell fossils above rock layers with plant fossils and no shells, indicating a change from land to water over time.] [Assessment Boundary: Assessment does not include specific knowledge of the mechanism of rock formation or memorization of specific rock formations and layers. Assessment is limited to relative time.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and location of certain fossil types indicate the order in which rock layers were formed.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Identify the evidence that supports particular points in an explanation.
Crosscutting Concepts: Patterns Patterns can be used as evidence to support an explanation. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes consistent patterns in natural systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. W.4.9.a,b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.MD.1: Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1,12), (2,24), (3,36),...
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS1.C; 3.LS4.A; MS.LS4.A; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Performance Expectation: Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. [Clarification Statement: Examples of evidence from patterns could include rock layers with marine shell fossils above rock layers with plant fossils and no shells, indicating a change from land to water over time.] [Assessment Boundary: Assessment does not include specific knowledge of the mechanism of rock formation or memorization of specific rock formations and layers. Assessment is limited to relative time.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and location of certain fossil types indicate the order in which rock layers were formed.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Identify the evidence that supports particular points in an explanation.
Crosscutting Concepts: Patterns Patterns can be used as evidence to support an explanation. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes consistent patterns in natural systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. W.4.9.a,b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.MD.1: Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1,12), (2,24), (3,36),...
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS1.C; 3.LS4.A; MS.LS4.A; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Standard Identifier: 4-ESS2-2
Grade:
4
Disciplinary Core Idea:
ESS2.B: Plate Tectonics and Large-Scale System Interactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: 4-ESS2 Earth’s Systems
Performance Expectation: Analyze and interpret data from maps to describe patterns of Earth’s features. [Clarification Statement: Maps can include topographic maps of Earth’s land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.]
Disciplinary Core Idea(s):
ESS2.B: Plate Tectonics and Large-Scale System Interactions The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of Earth.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to make sense of phenomena using logical reasoning.
Crosscutting Concepts: Patterns Patterns can be used as evidence to support an explanation.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.7: Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears. Mathematics 4.MD.2: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS2.B; 2.ESS2.C; 5.ESS2.C; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Performance Expectation: Analyze and interpret data from maps to describe patterns of Earth’s features. [Clarification Statement: Maps can include topographic maps of Earth’s land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.]
Disciplinary Core Idea(s):
ESS2.B: Plate Tectonics and Large-Scale System Interactions The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of Earth.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to make sense of phenomena using logical reasoning.
Crosscutting Concepts: Patterns Patterns can be used as evidence to support an explanation.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.7: Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears. Mathematics 4.MD.2: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS2.B; 2.ESS2.C; 5.ESS2.C; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Standard Identifier: 4-ESS3-2
Grade:
4
Disciplinary Core Idea:
ESS3.B: Natural Hazards, ETS1.B: Developing Possible Solutions
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: 4-ESS3 Earth and Human Activity
Performance Expectation: Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.* [Clarification Statement: Examples of solutions could include designing an earthquake resistant building and improving monitoring of volcanic activity.] [Assessment Boundary: Assessment is limited to earthquakes, floods, tsunamis, and volcanic eruptions.]
Disciplinary Core Idea(s):
ESS3.B: Natural Hazards A variety of hazards result from natural processes (e.g., earthquakes, tsunamis, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (Note: This Disciplinary Core Idea can also be found in 3.WC.) ETS1.B: Designing Solutions to Engineering Problems Testing a solution involves investigating how well it performs under a range of likely conditions. (secondary to 4-ESS3-2)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services.
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.OA.1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.
DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.C Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; MS.ESS2.A; MS.ESS3.B; MS.ETS1.B
Performance Expectation: Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.* [Clarification Statement: Examples of solutions could include designing an earthquake resistant building and improving monitoring of volcanic activity.] [Assessment Boundary: Assessment is limited to earthquakes, floods, tsunamis, and volcanic eruptions.]
Disciplinary Core Idea(s):
ESS3.B: Natural Hazards A variety of hazards result from natural processes (e.g., earthquakes, tsunamis, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (Note: This Disciplinary Core Idea can also be found in 3.WC.) ETS1.B: Designing Solutions to Engineering Problems Testing a solution involves investigating how well it performs under a range of likely conditions. (secondary to 4-ESS3-2)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services.
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.OA.1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.
DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.C Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; MS.ESS2.A; MS.ESS3.B; MS.ETS1.B
Standard Identifier: 5-ESS1-2
Grade:
5
Disciplinary Core Idea:
ESS1.B: Earth and the Solar System
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: 5-ESS1 Earth’s Place in the Universe
Performance Expectation: Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. [Clarification Statement: Examples of patterns could include the position and motion of Earth with respect to the sun and selected stars that are visible only in particular months.] [Assessment Boundary: Assessment does not include causes of seasons.]
Disciplinary Core Idea(s):
ESS1.B: Earth and the Solar System The orbits of Earth around the sun and of the moon around Earth, together with the rotation of Earth about an axis between its North and South poles, cause observable patterns. These include day and night; daily changes in the length and direction of shadows; and different positions of the sun, moon, and stars at different times of the day, month, and year.
Science & Engineering Practices: Analyzing and Interpreting Data Represent data in graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships.
Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort, classify, communicate and analyze simple rates of change for natural phenomena.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 5.G.2: Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 1.ESS1.A; 1.ESS1.B; 3.PS2.A; MS.ESS1.A; MS.ESS1.B
Performance Expectation: Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. [Clarification Statement: Examples of patterns could include the position and motion of Earth with respect to the sun and selected stars that are visible only in particular months.] [Assessment Boundary: Assessment does not include causes of seasons.]
Disciplinary Core Idea(s):
ESS1.B: Earth and the Solar System The orbits of Earth around the sun and of the moon around Earth, together with the rotation of Earth about an axis between its North and South poles, cause observable patterns. These include day and night; daily changes in the length and direction of shadows; and different positions of the sun, moon, and stars at different times of the day, month, and year.
Science & Engineering Practices: Analyzing and Interpreting Data Represent data in graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships.
Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort, classify, communicate and analyze simple rates of change for natural phenomena.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 5.G.2: Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 1.ESS1.A; 1.ESS1.B; 3.PS2.A; MS.ESS1.A; MS.ESS1.B
Standard Identifier: 5-ESS2-2
Grade:
5
Disciplinary Core Idea:
ESS2.C: The Roles of Water in Earth's Surface Processes
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-5: Using Mathematics and Computational Thinking
Content Area:
Earth and Space Science
Title: 5-ESS2 Earth’s Systems
Performance Expectation: Describe and graph the amounts of salt water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. [Assessment Boundary: Assessment is limited to oceans, lakes, rivers, glaciers, ground water, and polar ice caps, and does not include the atmosphere.]
Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Nearly all of Earth’s available water is in the ocean. Most fresh water is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere.
Science & Engineering Practices: Using Mathematics and Computational Thinking Describe and graph quantities such as area and volume to address scientific questions.
Crosscutting Concepts: Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight and volume.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.ESS2.C; MS.ESS2.C; MS.ESS3.A
Performance Expectation: Describe and graph the amounts of salt water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. [Assessment Boundary: Assessment is limited to oceans, lakes, rivers, glaciers, ground water, and polar ice caps, and does not include the atmosphere.]
Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Nearly all of Earth’s available water is in the ocean. Most fresh water is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere.
Science & Engineering Practices: Using Mathematics and Computational Thinking Describe and graph quantities such as area and volume to address scientific questions.
Crosscutting Concepts: Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight and volume.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.ESS2.C; MS.ESS2.C; MS.ESS3.A
Showing 1 - 10 of 26 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881