Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 1 - 10 of 42 Standards

Standard Identifier: K-2.AP.10

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.2, 4.4)

Standard:
Model daily processes by creating and following algorithms to complete tasks.

Descriptive Statement:
Algorithms are sequences of instructions that describe how to complete a specific task. Students create algorithms that reflect simple life tasks inside and outside of the classroom. For example, students could create algorithms to represent daily routines for getting ready for school, transitioning through center rotations, eating lunch, and putting away art materials. Students could then write a narrative sequence of events. (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3) Alternatively, students could create a game or a dance with a specific set of movements to reach an intentional goal or objective. (P.E K.2, 1.2, 2.2) Additionally, students could create a map of their neighborhood and give step-by-step directions of how they get to school. (HSS.K.4, 1.2, 2.2)

Standard Identifier: K-2.AP.11

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Variables
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Model the way programs store data.

Descriptive Statement:
Information in the real world can be represented in computer programs. Students model the digital storage of data by transforming real-world information into symbolic representations that include text, numbers, and images. For example, after identifying symbols on a map and explaining what they represent in the real world, students could create their own symbols and corresponding legend to represent items on a map of their classroom (HSS.K.4.3, 1.2.3, 2.2.2) Alternatively, students could invent symbols to represent beat and/or pitch. Students could then modify symbols within the notation and explain how the musical phrase changes. (VAPA Music K.1.1, 1.1.1, 2.1.1, 2.2.2)

Standard Identifier: K-2.AP.14

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Creating Computational Artifacts, Communicating About Computing (5.1, 7.2)

Standard:
Develop plans that describe a program’s sequence of events, goals, and expected outcomes.

Descriptive Statement:
Creating a plan for what a program will do clarifies the steps that will be needed to create the program and can be used to check if a program runs as expected. Students create a planning document to illustrate their program's sequence of events, goals, and expected outcomes of what their program will do. Planning documents could include a story map, a storyboard, or a sequential graphic organizer, to illustrate their program's sequence of events, goals, and expected outcomes of what their program will do. Students at this level may complete the planning process with help from the teacher. For example, students could create a storyboard or timeline that represents a family's history, leading to their current location of residence. Students could then create a plan for a program that animates the story of family locations. (HSS 2.1.1) (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3)

Standard Identifier: K-2.AP.16

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Testing and Refining Computational Artifacts (6.2)

Standard:
Debug errors in an algorithm or program that includes sequences and simple loops.

Descriptive Statement:
Algorithms or programs may not always work correctly. Students use various strategies, such as changing the sequence of the steps, following the algorithm in a step-by-step manner, or trial and error to fix problems in algorithms and programs. For example, when given images placed in a random order, students could give step-by-step commands to direct a robot, or a student playing a robot, to navigate to the images in the correct sequence. Examples of images include storyboard cards from a familiar story (CA CCSS for ELA/Literacy RL.K.2, RL.1.2, RL.2.2) and locations of the sun at different times of the day (CA NGSS: 1-ESS1-1). Alternatively, students could "program" the teacher or another classmate by giving precise instructions to make a peanut butter and jelly sandwich or navigate around the classroom. When the teacher or classmate doesn't respond as intended, students correct their commands. Additionally, students could receive a partially completed soundboard program that has a variety of animals programmed to play a corresponding sound when the user touches them. Students correct any sounds that don't match the animal (e.g., if the cat moos, students change the moo sound to meow).

Standard Identifier: K-2.NI.4

Grade Range: K–2
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Model and describe how people connect to other people, places, information and ideas through a network.

Descriptive Statement:
Information is passed between multiple points (nodes) on a network. The Internet is a network that enables people to connect with other people worldwide through many different points of connection. Students model ways that people communicate, find information, or acquire ideas through a network. Students use a network, such as the internet, to access information from multiple locations or devices. For example, students could utilize a cloud-based platform to access shared documents or note-taking applications for group research projects, and then create a model (e.g., flowchart) to illustrate how this network aids collaboration. (CA CCSS for ELA/Literacy W.K.7, W.1.7, W.2.7) Alternatively, students could design devices that use light or sound to aid communication across distances (e.g., light source to send signals, paper cup and string “telephones,” and a pattern of drum beats) and then describe how networks build connections. (CA NGSS: 1-PS4-4)

Standard Identifier: 3-5.AP.10

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Recognizing and Defining Computational Problems, Testing and Refining Computational Artifacts (3.3, 6.3)

Standard:
Compare and refine multiple algorithms for the same task and determine which is the most appropriate.

Descriptive Statement:
Different algorithms can achieve the same result, though sometimes one algorithm might be more appropriate for a specific solution. Students examine different ways to solve the same task and decide which would be the better solution for the specific scenario. For example, students could use a map and create multiple algorithms to model the early land and sea routes to and from European settlements in California. They could then compare and refine their algorithms to reflect faster travel times, shorter distances, or avoid specific characteristics, such as mountains, deserts, ocean currents, and wind patterns. (HSS.4.2.2) Alternatively, students could identify multiple algorithms for decomposing a fraction into a sum of fractions with the same denominator and record each decomposition with an equation (e.g., 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8). Students could then select the most efficient algorithm (e.g., fewest number of steps). (CA CCSS for Mathematics 4.NF.3b) Additionally, students could compare algorithms that describe how to get ready for school and modify them for supporting different goals including having time to care for a pet, being able to talk with a friend before classes start, or taking a longer route to school to accompany a younger sibling to their school first. Students could then write an opinion piece, justifying with reasons their selected algorithm is most appropriate. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)

Standard Identifier: 3-5.AP.11

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Variables
Practice(s): Creating Computational Artifacts (5.2)

Standard:
Create programs that use variables to store and modify data.

Descriptive Statement:
Variables are used to store and modify data. Students use variables in programs they create. At this level, students may need guidance in identifying when to create variables (i.e., performing the abstraction). For example, students could create a game to represent predators and prey in an ecosystem. They could declare a "score" variable, assign it to 0 at the start of the game, and add 1 (increment) the score each time the predator captures its prey. They could also declare a second "numberOfLives" variable, assign it to 3 at the start of the game, and subtract 1 (decrement) each time a prey is captured. They could program the game to end when "numberOfLives" equals 0. (CA NGSS: 5-LS2-1) (CA CCSS for Mathematics 5.OA.3) Alternatively, when students create programs to draw regular polygons, they could use variables to store the line size, line color, and/or side length. Students can extend learning by creatively combining a variety of polygons to create digital artwork, comparing and contrasting this to another work of art made by the use of different art tools and media, such as watercolor or tempera paints. (CA CCSS for Mathematics 3.G.1) (VAPA Visual Arts 3.1.4)

Standard Identifier: 3-5.AP.14

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.3)

Standard:
Create programs by incorporating smaller portions of existing programs, to develop something new or add more advanced features.

Descriptive Statement:
Programs can be broken down into smaller parts, which can be incorporated into new or existing programs. Students incorporate predefined functions into their original designs. At this level, students do not need to understand all of the underlying implementation details of the abstractions that they use. For example, students could use code from a ping pong animation to make a ball bounce in a new basketball game. They could also incorporate code from a single-player basketball game to create a two-player game with slightly different rules. Alternatively, students could remix an animated story and add their own conclusion and/or additional dialogue. (CA CCSS for ELA/Literacy W.3.3.B, W.3.3.D, W.4.3.B, W.4.3.E, W.5.3.B, W.5.3.E) Additionally, when creating a game that occurs on the moon or planets, students could incorporate and modify code that simulates gravity on Earth. They could modify the strength of the gravitational force based on the mass of the planet or moon. (CA NGSS: 5-PS2-1)

Standard Identifier: 3-5.AP.15

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Fostering an Inclusive Computing Culture, Creating Computational Artifacts (1.1, 5.1)

Standard:
Use an iterative process to plan and develop a program by considering the perspectives and preferences of others.

Descriptive Statement:
Planning is an important part of the iterative process of program development. Students gain a basic understanding of the importance and process of planning before beginning to write code for a program. They plan the development of a program by outlining key features, time and resource constraints, and user expectations. Students should document the plan as, for example, a storyboard, flowchart, pseudocode, or story map. For example, students could collaborate with a partner to plan and develop a program that graphs a function. They could iteratively modify the program based on feedback from diverse users, such as students who are color blind and may have trouble differentiating lines on a graph based on the color. (CA CCSS for Mathematics 5.G.1, 5.G.2) Alternatively, students could plan as a team to develop a program to display experimental data. They could implement the program in stages, generating basic displays first and then soliciting feedback from others on how easy it is to interpret (e.g., are labels clear and readable?, are lines thick enough?, are titles understandable?). Students could iteratively improve their display to make it more readable and to better support the communication of the finding of the experiment. (NGSS.3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)

Standard Identifier: 3-5.AP.16

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Creating Computational Artifacts, Communicating About Computing (5.2, 7.3)

Standard:
Observe intellectual property rights and give appropriate attribution when creating, remixing, or combining programs.

Descriptive Statement:
Intellectual property rights can vary by country, but copyright laws give the creator of a work a set of rights and prevents others from copying the work and using it in ways that they may not like. Students consider common licenses that place limitations or restrictions on the use of others' work, such as images and music downloaded from the Internet. When incorporating the work of others, students attribute the work. At this level, students could give attribution by including credits or links directly in their programs, code comments, or separate project pages. For example, when making a program to model the life cycle of a butterfly, students could modify and reuse an existing program that describes the life cycle of a frog. Based on their research, students could identify and use Creative Commons-licensed or public domain images and sounds of caterpillars and butterflies. Students give attribution by properly citing the source of the original piece as necessary. (CA NGSS: 3-LS-1-1) (CA CCSS for ELA/Literacy W.3.8, W.4.8, W.5.8) Alternatively, when creating a program explaining the structure of the United States goverment, students find Creative Commons-licensed or public domain images to represent the three branches of government and attribute ownership of the images appropriately. If students find and incorporate an audio file of a group playing part of the national anthem, they appropriately give attribution on the project page. (HSS.3.4.4)

Showing 1 - 10 of 42 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881