Computer Science Standards
Remove this criterion from the search
Algorithms
Remove this criterion from the search
Collection, Visualization, & Transformation
Remove this criterion from the search
Devices
Remove this criterion from the search
Hardware & Software
Remove this criterion from the search
Modularity
Remove this criterion from the search
Network Communication & Organization
Remove this criterion from the search
Program Development
Remove this criterion from the search
Safety, Law, & Ethics
Remove this criterion from the search
Storage
Remove this criterion from the search
Variables
Results
Showing 1 - 10 of 15 Standards
Standard Identifier: K-2.AP.16
Grade Range:
K–2
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Testing and Refining Computational Artifacts (6.2)
Standard:
Debug errors in an algorithm or program that includes sequences and simple loops.
Descriptive Statement:
Algorithms or programs may not always work correctly. Students use various strategies, such as changing the sequence of the steps, following the algorithm in a step-by-step manner, or trial and error to fix problems in algorithms and programs. For example, when given images placed in a random order, students could give step-by-step commands to direct a robot, or a student playing a robot, to navigate to the images in the correct sequence. Examples of images include storyboard cards from a familiar story (CA CCSS for ELA/Literacy RL.K.2, RL.1.2, RL.2.2) and locations of the sun at different times of the day (CA NGSS: 1-ESS1-1). Alternatively, students could "program" the teacher or another classmate by giving precise instructions to make a peanut butter and jelly sandwich or navigate around the classroom. When the teacher or classmate doesn't respond as intended, students correct their commands. Additionally, students could receive a partially completed soundboard program that has a variety of animals programmed to play a corresponding sound when the user touches them. Students correct any sounds that don't match the animal (e.g., if the cat moos, students change the moo sound to meow).
Debug errors in an algorithm or program that includes sequences and simple loops.
Descriptive Statement:
Algorithms or programs may not always work correctly. Students use various strategies, such as changing the sequence of the steps, following the algorithm in a step-by-step manner, or trial and error to fix problems in algorithms and programs. For example, when given images placed in a random order, students could give step-by-step commands to direct a robot, or a student playing a robot, to navigate to the images in the correct sequence. Examples of images include storyboard cards from a familiar story (CA CCSS for ELA/Literacy RL.K.2, RL.1.2, RL.2.2) and locations of the sun at different times of the day (CA NGSS: 1-ESS1-1). Alternatively, students could "program" the teacher or another classmate by giving precise instructions to make a peanut butter and jelly sandwich or navigate around the classroom. When the teacher or classmate doesn't respond as intended, students correct their commands. Additionally, students could receive a partially completed soundboard program that has a variety of animals programmed to play a corresponding sound when the user touches them. Students correct any sounds that don't match the animal (e.g., if the cat moos, students change the moo sound to meow).
Standard Identifier: 3-5.AP.10
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Recognizing and Defining Computational Problems, Testing and Refining Computational Artifacts (3.3, 6.3)
Standard:
Compare and refine multiple algorithms for the same task and determine which is the most appropriate.
Descriptive Statement:
Different algorithms can achieve the same result, though sometimes one algorithm might be more appropriate for a specific solution. Students examine different ways to solve the same task and decide which would be the better solution for the specific scenario. For example, students could use a map and create multiple algorithms to model the early land and sea routes to and from European settlements in California. They could then compare and refine their algorithms to reflect faster travel times, shorter distances, or avoid specific characteristics, such as mountains, deserts, ocean currents, and wind patterns. (HSS.4.2.2) Alternatively, students could identify multiple algorithms for decomposing a fraction into a sum of fractions with the same denominator and record each decomposition with an equation (e.g., 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8). Students could then select the most efficient algorithm (e.g., fewest number of steps). (CA CCSS for Mathematics 4.NF.3b) Additionally, students could compare algorithms that describe how to get ready for school and modify them for supporting different goals including having time to care for a pet, being able to talk with a friend before classes start, or taking a longer route to school to accompany a younger sibling to their school first. Students could then write an opinion piece, justifying with reasons their selected algorithm is most appropriate. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)
Compare and refine multiple algorithms for the same task and determine which is the most appropriate.
Descriptive Statement:
Different algorithms can achieve the same result, though sometimes one algorithm might be more appropriate for a specific solution. Students examine different ways to solve the same task and decide which would be the better solution for the specific scenario. For example, students could use a map and create multiple algorithms to model the early land and sea routes to and from European settlements in California. They could then compare and refine their algorithms to reflect faster travel times, shorter distances, or avoid specific characteristics, such as mountains, deserts, ocean currents, and wind patterns. (HSS.4.2.2) Alternatively, students could identify multiple algorithms for decomposing a fraction into a sum of fractions with the same denominator and record each decomposition with an equation (e.g., 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8). Students could then select the most efficient algorithm (e.g., fewest number of steps). (CA CCSS for Mathematics 4.NF.3b) Additionally, students could compare algorithms that describe how to get ready for school and modify them for supporting different goals including having time to care for a pet, being able to talk with a friend before classes start, or taking a longer route to school to accompany a younger sibling to their school first. Students could then write an opinion piece, justifying with reasons their selected algorithm is most appropriate. (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)
Standard Identifier: 3-5.AP.17
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Testing and Refining Computational Artifacts (6.2)
Standard:
Test and debug a program or algorithm to ensure it accomplishes the intended task.
Descriptive Statement:
Programs do not always run properly. Students need to understand how to test and make necessary corrections to their programs to ensure they run properly. Students successfully identify and fix errors in (debug) their programs and programs created by others. Debugging strategies at this level may include testing to determine the first place the solution is in error and fixing accordingly, leaving "breadcrumbs" in a program, and soliciting assistance from peers and online resources. For example, when students are developing a program to control the movement of a robot in a confined space, students test various inputs that control movement of the robot to make sure it behaves as intended (e.g., if an input would cause the robot to move past a wall of the confined space, it should not move at all). (CA NGSS: 3-5-ETS1-3) Additionally, students could test and debug an algorithm by tracing the inputs and outputs on a whiteboard. When noticing "bugs" (errors), students could identify what was supposed to happen and step through the algorithm to locate and then correct the error.
Test and debug a program or algorithm to ensure it accomplishes the intended task.
Descriptive Statement:
Programs do not always run properly. Students need to understand how to test and make necessary corrections to their programs to ensure they run properly. Students successfully identify and fix errors in (debug) their programs and programs created by others. Debugging strategies at this level may include testing to determine the first place the solution is in error and fixing accordingly, leaving "breadcrumbs" in a program, and soliciting assistance from peers and online resources. For example, when students are developing a program to control the movement of a robot in a confined space, students test various inputs that control movement of the robot to make sure it behaves as intended (e.g., if an input would cause the robot to move past a wall of the confined space, it should not move at all). (CA NGSS: 3-5-ETS1-3) Additionally, students could test and debug an algorithm by tracing the inputs and outputs on a whiteboard. When noticing "bugs" (errors), students could identify what was supposed to happen and step through the algorithm to locate and then correct the error.
Standard Identifier: 3-5.AP.18
Grade Range:
3–5
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Collaborating Around Computing (2.2)
Standard:
Perform different roles when collaborating with peers during the design, implementation, and review stages of program development.
Descriptive Statement:
Collaborative computing is the process of creating computational artifacts by working in pairs or on teams. It involves asking for the contributions and feedback of others. Effective collaboration can often lead to better outcomes than working independently. With teacher guidance, students take turns in different roles during program development, such as driver, navigator, notetaker, facilitator, and debugger, as they design and implement their program. For example, while taking on different roles during program development, students could create and maintain a journal about their experiences working collaboratively. (CA CCSS for ELA/Literacy W.3.10, W.4.10, W.5.10) (CA NGSS: 3-5-ETS1-2)
Perform different roles when collaborating with peers during the design, implementation, and review stages of program development.
Descriptive Statement:
Collaborative computing is the process of creating computational artifacts by working in pairs or on teams. It involves asking for the contributions and feedback of others. Effective collaboration can often lead to better outcomes than working independently. With teacher guidance, students take turns in different roles during program development, such as driver, navigator, notetaker, facilitator, and debugger, as they design and implement their program. For example, while taking on different roles during program development, students could create and maintain a journal about their experiences working collaboratively. (CA CCSS for ELA/Literacy W.3.10, W.4.10, W.5.10) (CA NGSS: 3-5-ETS1-2)
Standard Identifier: 6-8.AP.15
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Fostering an Inclusive Computing Culture, Collaborating Around Computing (1.1, 2.3)
Standard:
Seek and incorporate feedback from team members and users to refine a solution that meets user needs.
Descriptive Statement:
Development teams that employ user-centered design processes create solutions (e.g., programs and devices) that can have a large societal impact (e.g., an app that allows people with speech difficulties to allow a smartphone to clarify their speech). Students begin to seek diverse perspectives throughout the design process to improve their computational artifacts. Considerations of the end-user may include usability, accessibility, age-appropriate content, respectful language, user perspective, pronoun use, or color contrast. For example, if students are designing an app to teach their classmates about recycling, they could first interview or survey their classmates to learn what their classmates already know about recycling and why they do or do not recycle. After building a prototype of the app, the students could then test the app with a sample of their classmates to see if they learned anything from the app and if they had difficulty using the app (e.g., trouble reading or understanding text). After gathering interview data, students could refine the app to meet classmate needs. (CA NGSS: MS-ETS1-4)
Seek and incorporate feedback from team members and users to refine a solution that meets user needs.
Descriptive Statement:
Development teams that employ user-centered design processes create solutions (e.g., programs and devices) that can have a large societal impact (e.g., an app that allows people with speech difficulties to allow a smartphone to clarify their speech). Students begin to seek diverse perspectives throughout the design process to improve their computational artifacts. Considerations of the end-user may include usability, accessibility, age-appropriate content, respectful language, user perspective, pronoun use, or color contrast. For example, if students are designing an app to teach their classmates about recycling, they could first interview or survey their classmates to learn what their classmates already know about recycling and why they do or do not recycle. After building a prototype of the app, the students could then test the app with a sample of their classmates to see if they learned anything from the app and if they had difficulty using the app (e.g., trouble reading or understanding text). After gathering interview data, students could refine the app to meet classmate needs. (CA NGSS: MS-ETS1-4)
Standard Identifier: 6-8.AP.17
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Testing and Refining Computational Artifacts (6.1)
Standard:
Systematically test and refine programs using a range of test cases.
Descriptive Statement:
Use cases and test cases are created to evaluate whether programs function as intended. At this level, students develop use cases and test cases with teacher guidance. Testing should become a deliberate process that is more iterative, systematic, and proactive than at lower levels. For example, students test programs by considering potential errors, such as what will happen if a user enters invalid input (e.g., negative numbers and 0 instead of positive numbers). Alternatively, in an interactive program, students could test that the character cannot move off of the screen in any direction, cannot move through walls, and can interact with other characters. They then adjust character behavior as needed.
Systematically test and refine programs using a range of test cases.
Descriptive Statement:
Use cases and test cases are created to evaluate whether programs function as intended. At this level, students develop use cases and test cases with teacher guidance. Testing should become a deliberate process that is more iterative, systematic, and proactive than at lower levels. For example, students test programs by considering potential errors, such as what will happen if a user enters invalid input (e.g., negative numbers and 0 instead of positive numbers). Alternatively, in an interactive program, students could test that the character cannot move off of the screen in any direction, cannot move through walls, and can interact with other characters. They then adjust character behavior as needed.
Standard Identifier: 6-8.AP.18
Grade Range:
6–8
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Collaborating Around Computing, Creating Computational Artifacts (2.2, 5.1)
Standard:
Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.
Descriptive Statement:
Collaboration is a common and crucial practice in programming development. Often, many individuals and groups work on the interdependent parts of a project together. Students assume pre-defined roles within their teams and manage the project workflow using structured timelines. With teacher guidance, they begin to create collective goals, expectations, and equitable workloads. For example, students could decompose the design stage of a game into planning the storyboard, flowchart, and different parts of the game mechanics. They can then distribute tasks and roles among members of the team and assign deadlines. Alternatively, students could work as a team to develop a storyboard for an animation representing a written narrative, and then program the scenes individually. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3)
Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.
Descriptive Statement:
Collaboration is a common and crucial practice in programming development. Often, many individuals and groups work on the interdependent parts of a project together. Students assume pre-defined roles within their teams and manage the project workflow using structured timelines. With teacher guidance, they begin to create collective goals, expectations, and equitable workloads. For example, students could decompose the design stage of a game into planning the storyboard, flowchart, and different parts of the game mechanics. They can then distribute tasks and roles among members of the team and assign deadlines. Alternatively, students could work as a team to develop a storyboard for an animation representing a written narrative, and then program the scenes individually. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3)
Standard Identifier: 9-12.AP.20
Grade Range:
9–12
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Testing and Refining Computational Artifacts (6.3)
Standard:
Iteratively evaluate and refine a computational artifact to enhance its performance, reliability, usability, and accessibility.
Descriptive Statement:
Evaluation and refinement of computational artifacts involves measuring, testing, debugging, and responding to the changing needs and expectations of users. Aspects that can be evaluated include correctness, performance, reliability, usability, and accessibility. For example, after witnessing common errors with user input in a computational artifact, students could refine the artifact to validate user input and provide an error message if invalid data is provided. Alternatively, students could observe a robot in a variety of lighting conditions to determine whether the code controlling a light sensor should be modified to make it less sensitive. Additionally, students could also incorporate feedback from a variety of end users to help guide the size and placement of menus and buttons in a user interface.
Iteratively evaluate and refine a computational artifact to enhance its performance, reliability, usability, and accessibility.
Descriptive Statement:
Evaluation and refinement of computational artifacts involves measuring, testing, debugging, and responding to the changing needs and expectations of users. Aspects that can be evaluated include correctness, performance, reliability, usability, and accessibility. For example, after witnessing common errors with user input in a computational artifact, students could refine the artifact to validate user input and provide an error message if invalid data is provided. Alternatively, students could observe a robot in a variety of lighting conditions to determine whether the code controlling a light sensor should be modified to make it less sensitive. Additionally, students could also incorporate feedback from a variety of end users to help guide the size and placement of menus and buttons in a user interface.
Standard Identifier: 9-12.AP.21
Grade Range:
9–12
Concept:
Algorithms & Programming
Subconcept:
Program Development
Practice(s):
Collaborating Around Computing (2.4)
Standard:
Design and develop computational artifacts working in team roles using collaborative tools.
Descriptive Statement:
Collaborative tools can be as complex as a source code version control system or as simple as a collaborative word processor. Team roles in pair programming are driver and navigator but students can take on more specialized roles in larger teams. Teachers or students should choose resources that aid collaborative program development as programs grow more complex. For example, students might work as a team to develop a mobile application that addresses a problem relevant to the school or community, using appropriate tools to support actions such as: establish and manage the project timeline; design, share, and revise graphical user interface elements; implement program components, track planned, in-progress, and completed components, and design and implement user testing.
Design and develop computational artifacts working in team roles using collaborative tools.
Descriptive Statement:
Collaborative tools can be as complex as a source code version control system or as simple as a collaborative word processor. Team roles in pair programming are driver and navigator but students can take on more specialized roles in larger teams. Teachers or students should choose resources that aid collaborative program development as programs grow more complex. For example, students might work as a team to develop a mobile application that addresses a problem relevant to the school or community, using appropriate tools to support actions such as: establish and manage the project timeline; design, share, and revise graphical user interface elements; implement program components, track planned, in-progress, and completed components, and design and implement user testing.
Standard Identifier: 9-12S.AP.18
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Modularity
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts, Testing and Refining Computational Artifacts (4.2, 5.3, 6.2)
Standard:
Demonstrate code reuse by creating programming solutions using libraries and APIs.
Descriptive Statement:
Code reuse is critical both for managing complexity in modern programs, but also in increasing programming efficiency and reliability by having programmers reuse code that has been highly vetted and tested. Software libraries allow developers to integrate common and often complex functionality without having to reimplement that functionality from scratch. Students identify, evaluate, and select appropriate application programming interfaces (APIs) from software libraries to use with a given language and operating system. They appropriately use resources such as technical documentation, online forums, and developer communities to learn about libraries and troubleshoot problems with APIs that they have chosen. For example, students could import charting and graphing modules to display data sets, adopt an online service that provides cloud storage and retrieval for a database used in a multiplayer game, or import location services into an app that identifies points of interest on a map. Libraries of APIs can be student-created or publicly available (e.g., common graphics libraries or map/navigation APIs).
Demonstrate code reuse by creating programming solutions using libraries and APIs.
Descriptive Statement:
Code reuse is critical both for managing complexity in modern programs, but also in increasing programming efficiency and reliability by having programmers reuse code that has been highly vetted and tested. Software libraries allow developers to integrate common and often complex functionality without having to reimplement that functionality from scratch. Students identify, evaluate, and select appropriate application programming interfaces (APIs) from software libraries to use with a given language and operating system. They appropriately use resources such as technical documentation, online forums, and developer communities to learn about libraries and troubleshoot problems with APIs that they have chosen. For example, students could import charting and graphing modules to display data sets, adopt an online service that provides cloud storage and retrieval for a database used in a multiplayer game, or import location services into an app that identifies points of interest on a map. Libraries of APIs can be student-created or publicly available (e.g., common graphics libraries or map/navigation APIs).
Showing 1 - 10 of 15 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881