Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 1 - 10 of 79 Standards

Standard Identifier: K-2.AP.12

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Control
Practice(s): Creating Computational Artifacts (5.2)

Standard:
Create programs with sequences of commands and simple loops, to express ideas or address a problem.

Descriptive Statement:
People create programs by composing sequences of commands that specify the precise order in which instructions should be executed. Loops enable programs to repeat a sequence of commands multiple times. For example, students could follow simple movements in response to oral instructions. Students could then create a simple sequence of movement commands in response to a given problem (e.g., In how many ways can you travel from point A to point B?) and represent it as a computer program, using loops to repeat commands. (VAPA Dance K.1.4, 1.2.3, 1.2.5, 1.2.8, 2.2.1, 2.2.2, 2.2.3) Alternatively, on a mat with many different CVC words, students could program robots to move to words with a similar vowel sound. Students could look for multiple ways to solve the problem and simplify their solution by incorporating loops. (CA CCSS for ELA/Literacy RF.K.2.D, RF.1.2.C)

Standard Identifier: K-2.AP.14

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Creating Computational Artifacts, Communicating About Computing (5.1, 7.2)

Standard:
Develop plans that describe a program’s sequence of events, goals, and expected outcomes.

Descriptive Statement:
Creating a plan for what a program will do clarifies the steps that will be needed to create the program and can be used to check if a program runs as expected. Students create a planning document to illustrate their program's sequence of events, goals, and expected outcomes of what their program will do. Planning documents could include a story map, a storyboard, or a sequential graphic organizer, to illustrate their program's sequence of events, goals, and expected outcomes of what their program will do. Students at this level may complete the planning process with help from the teacher. For example, students could create a storyboard or timeline that represents a family's history, leading to their current location of residence. Students could then create a plan for a program that animates the story of family locations. (HSS 2.1.1) (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3)

Standard Identifier: K-2.AP.15

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.3)

Standard:
Give attribution when using the ideas and creations of others while developing programs.

Descriptive Statement:
Computing makes it easy to reuse and remix others' creations, and this comes with a level of responsibility. Students credit artifacts that were created by others, such as pictures, music, and code. Credit could be given orally if presenting their work to the class, or in writing if sharing work on a class blog or website. Proper attribution at this stage does not require formal citation, such as in a bibliography or works cited document. For example, when creating an animation of the sun, moon, and stars using a blocks-based language, students could draw their own sun and use an image of the moon and stars from a website or a teammate. When students present the model to the class, they can orally give credit to the website or peer for the contributions. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5) (NGSS.1-ESS1-1) (CA Model School Library Standards 2.3.b, 2.4.2.a)

Standard Identifier: K-2.AP.16

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Testing and Refining Computational Artifacts (6.2)

Standard:
Debug errors in an algorithm or program that includes sequences and simple loops.

Descriptive Statement:
Algorithms or programs may not always work correctly. Students use various strategies, such as changing the sequence of the steps, following the algorithm in a step-by-step manner, or trial and error to fix problems in algorithms and programs. For example, when given images placed in a random order, students could give step-by-step commands to direct a robot, or a student playing a robot, to navigate to the images in the correct sequence. Examples of images include storyboard cards from a familiar story (CA CCSS for ELA/Literacy RL.K.2, RL.1.2, RL.2.2) and locations of the sun at different times of the day (CA NGSS: 1-ESS1-1). Alternatively, students could "program" the teacher or another classmate by giving precise instructions to make a peanut butter and jelly sandwich or navigate around the classroom. When the teacher or classmate doesn't respond as intended, students correct their commands. Additionally, students could receive a partially completed soundboard program that has a variety of animals programmed to play a corresponding sound when the user touches them. Students correct any sounds that don't match the animal (e.g., if the cat moos, students change the moo sound to meow).

Standard Identifier: K-2.AP.17

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Communicating About Computing (7.2)

Standard:
Describe the steps taken and choices made during the iterative process of program development.

Descriptive Statement:
Program developers make choices and iterate to continually refine their product. At this stage, students explain or write about the goals and expected outcomes of the programs they create and the choices that they made when creating programs. Students could use coding journals, discussions with a teacher, class presentations, or blogs. For example, students could use a combination of images, verbal reflections, a physical model, and/or written text to show the step-by-step process taken to develop a program such as cutting and pasting coding commands into a journal, using manipulatives that represent different commands and control structures, and taking screenshots of code and adding to a digital journal. This iterative process could be documented via a speech, journal, one on one conference with teacher or peer, small group conference, or blog. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5) (CA NGSS: K-2-ETS1.2)

Standard Identifier: K-2.CS.1

Grade Range: K–2
Concept: Computing Systems
Subconcept: Devices
Practice(s): Fostering an Inclusive Computing Culture (1.1)

Standard:
Select and operate computing devices that perform a variety of tasks accurately and quickly based on user needs and preferences.

Descriptive Statement:
People use computing devices to perform a variety of tasks accurately and quickly. Computing devices interpret and follow the given instructions literally. Students select and operate an appropriate computing device and corresponding program or app for a given task. For example, students could use computing devices to describe what plants and animals (including humans) need to survive. In this case, students could choose to use a keyboard to type explanatory sentences onto graphics. They could also choose to use a touchscreen device with a stylus to annotate an image for a slideshow, or choose to use a camera enabled device to make a video. Student choices may reflect their own needs or the needs of others. (CA NGSS: K-LS1-1; 2-LS4-1) Alternatively, students could choose to use a computing device with audio recording capabilities to recount stories or poems. Students could clarify thoughts, ideas, or feelings via their preference of either using a device with digital drawing tools, or by creating paper and pencil drawing based on their needs and preferences. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5)

Standard Identifier: K-2.CS.3

Grade Range: K–2
Concept: Computing Systems
Subconcept: Troubleshooting
Practice(s): Testing and Refining Computational Artifacts, Communicating About Computing (6.2, 7.2)

Standard:
Describe basic hardware and software problems using accurate terminology.

Descriptive Statement:
Problems with computing systems have different causes. Accurate description of the problem aids users in finding solutions. Students communicate a problem with accurate terminology (e.g., when an app or program is not working as expected, a device will not turn on, the sound does not work, etc.). Students at this level do not need to understand the causes of hardware and software problems. For example, students could sort hardware and software terms on a word wall, and refer to the word wall when describing problems using "I see..." statements (e.g., "I see the pointer on the screen is missing", "I see that the computer will not turn on"). (CA CCSS for ELA/Literacy L.K.5.A, L.1.5.A, SL K.5, SL1.5, SL 2.5) (Visual Arts Kinder 5.2) Alternatively, students could use appropriate terminology during collaborative conversations as they learn to debug, troubleshoot, collaborate, and think critically with technology. (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL.2.1)

Standard Identifier: K-2.DA.8

Grade Range: K–2
Concept: Data & Analysis
Subconcept: Collection, Visualization, & Transformation
Practice(s): Developing and Using Abstractions, Communicating About Computing (4.4, 7.1)

Standard:
Collect and present data in various visual formats.

Descriptive Statement:
Data can be collected and presented in various visual formats. For example, students could measure temperature changes throughout a day. They could then discuss ways to display the data visually. Students could extend the activity by writing different narratives based on collected data, such as a story that begins in the morning when temperatures are low and one that begins in the afternoon when the sun is high and temperatures are higher. (CA CCSS for ELA/Literacy RL.K.9, RL.1.9, RL.2.9, W.K.3, W.1.3, W.2.3). Alternatively, students collect peers' favorite flavor of ice cream and brainstorm differing ways to display the data. In groups, students can choose to display and present the data in a format of their choice. (CA CCSS for Mathematics K.MD.3, 1.MD.4, 2.MD.10)

Standard Identifier: K-2.IC.18

Grade Range: K–2
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Recognizing and Defining Computational Problems (3.1)

Standard:
Compare how people lived and worked before and after the adoption of new computing technologies.

Descriptive Statement:
Computing technologies have changed the way people live and work. Students describe the positive and negative impacts of these changes. For example, as a class, students could create a timeline that includes advancements in computing technologies. Each student could then choose an advancement from the timeline and make a graphic organizer noting how people's lives were different before and after its introduction into society. Student responses could include: In the past, if students wanted to read about a topic, they needed access to a library to find a book about it. Today, students can view and read information on the Internet about a topic or they can download e-books about it directly to a device. Such information may be available in more than one language and could be read to a student, allowing for great accessibility. (HSS.K.6.3) Alternatively, students could retell or dramatize stories, myths, and fairy tales from two distinct time periods before and after a particular computing technology had been introduced. For example, the setting of one story could take place before smartphones had been invented, while a second setting could take place with smartphones in use by characters in the story. Students could note the positive and negative aspects of smartphones on the daily lives of the characters in the story. (VAPA Theatre Arts K.3.1, K.3.2, 1.2.2, 2.3.2) (CA CCSS for ELA/Literacy RL.K.2, RL.K.9, RL.1., RL.1.9, RL.2.2, RL.2.9)

Standard Identifier: K-2.IC.19

Grade Range: K–2
Concept: Impacts of Computing
Subconcept: Social Interactions
Practice(s): Collaborating Around Computing (2.1)

Standard:
Work respectfully and responsibly with others when communicating electronically.

Descriptive Statement:
Electronic communication facilitates positive interactions, such as sharing ideas with many people, but the public and anonymous nature of electronic communication also allows intimidating and inappropriate behavior in the form of cyberbullying. Responsible electronic communication includes limiting access to personably identifiable information. Students learn and use appropriate behavior when communicating electronically (often called "netiquette"). For example, students could share their work on a classroom blog or in other collaborative spaces online, taking care to avoid sharing information that is inappropriate or that could personally identify themselves to others. (CA CCSS for ELA/Literacy W.K.6, W.1.6, W.21.6) Alternatively, students could provide feedback to others on their work in a kind and respectful manner. They could learn how written words can be easily misinterpreted and may seem negative when the intention may be to express confusion, give ideas, or prompt further discussion. They could also learn to identify harmful behavior on collaborative spaces and intervening to find the proper authority to help. (CA CCSS for ELA/Literacy W.K.5, W.1.5, W.2.5) (HSS 1.1.2)

Showing 1 - 10 of 79 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881