Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 1 - 10 of 23 Standards

Standard Identifier: K-2.AP.16

Grade Range: K–2
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Testing and Refining Computational Artifacts (6.2)

Standard:
Debug errors in an algorithm or program that includes sequences and simple loops.

Descriptive Statement:
Algorithms or programs may not always work correctly. Students use various strategies, such as changing the sequence of the steps, following the algorithm in a step-by-step manner, or trial and error to fix problems in algorithms and programs. For example, when given images placed in a random order, students could give step-by-step commands to direct a robot, or a student playing a robot, to navigate to the images in the correct sequence. Examples of images include storyboard cards from a familiar story (CA CCSS for ELA/Literacy RL.K.2, RL.1.2, RL.2.2) and locations of the sun at different times of the day (CA NGSS: 1-ESS1-1). Alternatively, students could "program" the teacher or another classmate by giving precise instructions to make a peanut butter and jelly sandwich or navigate around the classroom. When the teacher or classmate doesn't respond as intended, students correct their commands. Additionally, students could receive a partially completed soundboard program that has a variety of animals programmed to play a corresponding sound when the user touches them. Students correct any sounds that don't match the animal (e.g., if the cat moos, students change the moo sound to meow).

Standard Identifier: K-2.IC.19

Grade Range: K–2
Concept: Impacts of Computing
Subconcept: Social Interactions
Practice(s): Collaborating Around Computing (2.1)

Standard:
Work respectfully and responsibly with others when communicating electronically.

Descriptive Statement:
Electronic communication facilitates positive interactions, such as sharing ideas with many people, but the public and anonymous nature of electronic communication also allows intimidating and inappropriate behavior in the form of cyberbullying. Responsible electronic communication includes limiting access to personably identifiable information. Students learn and use appropriate behavior when communicating electronically (often called "netiquette"). For example, students could share their work on a classroom blog or in other collaborative spaces online, taking care to avoid sharing information that is inappropriate or that could personally identify themselves to others. (CA CCSS for ELA/Literacy W.K.6, W.1.6, W.21.6) Alternatively, students could provide feedback to others on their work in a kind and respectful manner. They could learn how written words can be easily misinterpreted and may seem negative when the intention may be to express confusion, give ideas, or prompt further discussion. They could also learn to identify harmful behavior on collaborative spaces and intervening to find the proper authority to help. (CA CCSS for ELA/Literacy W.K.5, W.1.5, W.2.5) (HSS 1.1.2)

Standard Identifier: 3-5.AP.17

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Testing and Refining Computational Artifacts (6.2)

Standard:
Test and debug a program or algorithm to ensure it accomplishes the intended task.

Descriptive Statement:
Programs do not always run properly. Students need to understand how to test and make necessary corrections to their programs to ensure they run properly. Students successfully identify and fix errors in (debug) their programs and programs created by others. Debugging strategies at this level may include testing to determine the first place the solution is in error and fixing accordingly, leaving "breadcrumbs" in a program, and soliciting assistance from peers and online resources. For example, when students are developing a program to control the movement of a robot in a confined space, students test various inputs that control movement of the robot to make sure it behaves as intended (e.g., if an input would cause the robot to move past a wall of the confined space, it should not move at all). (CA NGSS: 3-5-ETS1-3) Additionally, students could test and debug an algorithm by tracing the inputs and outputs on a whiteboard. When noticing "bugs" (errors), students could identify what was supposed to happen and step through the algorithm to locate and then correct the error.

Standard Identifier: 3-5.AP.18

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Collaborating Around Computing (2.2)

Standard:
Perform different roles when collaborating with peers during the design, implementation, and review stages of program development.

Descriptive Statement:
Collaborative computing is the process of creating computational artifacts by working in pairs or on teams. It involves asking for the contributions and feedback of others. Effective collaboration can often lead to better outcomes than working independently. With teacher guidance, students take turns in different roles during program development, such as driver, navigator, notetaker, facilitator, and debugger, as they design and implement their program. For example, while taking on different roles during program development, students could create and maintain a journal about their experiences working collaboratively. (CA CCSS for ELA/Literacy W.3.10, W.4.10, W.5.10) (CA NGSS: 3-5-ETS1-2)

Standard Identifier: 3-5.NI.5

Grade Range: 3–5
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Recognizing and Defining Computational Problems (3.1)

Standard:
Describe physical and digital security measures for protecting personal information.

Descriptive Statement:
Personal information can be protected physically and digitally. Cybersecurity is the protection from unauthorized use of electronic data, or the measures taken to achieve this. Students identify what personal information is and the reasons for protecting it. Students describe physical and digital approaches for protecting personal information such as using strong passwords and biometric scanners. For example, students could engage in a collaborative discussion orally or in writing regarding topics that relate to personal cybersecurity issues. Discussion topics could be based on current events related to cybersecurity or topics that are applicable to students, such as the necessity of backing up data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or why we should keep operating systems updated and use anti-virus software to protect data and systems. Students could also discuss physical measures that can be used to protect data including biometric scanners, locked doors, and physical backups. (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)

Standard Identifier: 6-8.AP.15

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Fostering an Inclusive Computing Culture, Collaborating Around Computing (1.1, 2.3)

Standard:
Seek and incorporate feedback from team members and users to refine a solution that meets user needs.

Descriptive Statement:
Development teams that employ user-centered design processes create solutions (e.g., programs and devices) that can have a large societal impact (e.g., an app that allows people with speech difficulties to allow a smartphone to clarify their speech). Students begin to seek diverse perspectives throughout the design process to improve their computational artifacts. Considerations of the end-user may include usability, accessibility, age-appropriate content, respectful language, user perspective, pronoun use, or color contrast. For example, if students are designing an app to teach their classmates about recycling, they could first interview or survey their classmates to learn what their classmates already know about recycling and why they do or do not recycle. After building a prototype of the app, the students could then test the app with a sample of their classmates to see if they learned anything from the app and if they had difficulty using the app (e.g., trouble reading or understanding text). After gathering interview data, students could refine the app to meet classmate needs. (CA NGSS: MS-ETS1-4)

Standard Identifier: 6-8.AP.17

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Testing and Refining Computational Artifacts (6.1)

Standard:
Systematically test and refine programs using a range of test cases.

Descriptive Statement:
Use cases and test cases are created to evaluate whether programs function as intended. At this level, students develop use cases and test cases with teacher guidance. Testing should become a deliberate process that is more iterative, systematic, and proactive than at lower levels. For example, students test programs by considering potential errors, such as what will happen if a user enters invalid input (e.g., negative numbers and 0 instead of positive numbers). Alternatively, in an interactive program, students could test that the character cannot move off of the screen in any direction, cannot move through walls, and can interact with other characters. They then adjust character behavior as needed.

Standard Identifier: 6-8.AP.18

Grade Range: 6–8
Concept: Algorithms & Programming
Subconcept: Program Development
Practice(s): Collaborating Around Computing, Creating Computational Artifacts (2.2, 5.1)

Standard:
Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.

Descriptive Statement:
Collaboration is a common and crucial practice in programming development. Often, many individuals and groups work on the interdependent parts of a project together. Students assume pre-defined roles within their teams and manage the project workflow using structured timelines. With teacher guidance, they begin to create collective goals, expectations, and equitable workloads. For example, students could decompose the design stage of a game into planning the storyboard, flowchart, and different parts of the game mechanics. They can then distribute tasks and roles among members of the team and assign deadlines. Alternatively, students could work as a team to develop a storyboard for an animation representing a written narrative, and then program the scenes individually. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3)

Standard Identifier: 6-8.CS.1

Grade Range: 6–8
Concept: Computing Systems
Subconcept: Devices
Practice(s): Fostering an Inclusive Computing Culture, Recognizing and Defining Computational Problems (1.2, 3.3)

Standard:
Design modifications to computing devices in order to improve the ways users interact with the devices.

Descriptive Statement:
Computing devices can extend the abilities of humans, but design considerations are critical to make these devices useful. Students suggest modifications to the design of computing devices and describe how these modifications would improve usabilty. For example, students could create a design for the screen layout of a smartphone that is more usable by people with vision impairments or hand tremors. They might also design how to use the device as a scanner to convert text to speech. Alternatively, students could design modifications for a student ID card reader to increase usability by planning for scanner height, need of scanner device to be connected physically to the computer, robustness of scanner housing, and choice of use of RFID or line of sight scanners. (CA NGSS: MS-ETS1-1)

Standard Identifier: 6-8.DA.9

Grade Range: 6–8
Concept: Data & Analysis
Subconcept: Inference & Models
Practice(s): Developing and Using Abstractions, Testing and Refining Computational Artifacts (4.4, 6.1)

Standard:
Test and analyze the effects of changing variables while using computational models.

Descriptive Statement:
Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results. For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of track, size and mass of the robot) and discussing how these changes affect how far the robot travels. (CA NGSS: MS-PS2-2) Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and analyze how these changes affect who wins the game. (CA NGSS: MS-ETS1-3) Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects of changing variables representing the common color ratios in a typical bag of candy. (CA CCSS for Mathematics 7.SP.7, 8.SP.4)

Showing 1 - 10 of 23 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881