Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 1 - 8 of 8 Standards

Standard Identifier: 3-5.AP.14

Grade Range: 3–5
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.3)

Standard:
Create programs by incorporating smaller portions of existing programs, to develop something new or add more advanced features.

Descriptive Statement:
Programs can be broken down into smaller parts, which can be incorporated into new or existing programs. Students incorporate predefined functions into their original designs. At this level, students do not need to understand all of the underlying implementation details of the abstractions that they use. For example, students could use code from a ping pong animation to make a ball bounce in a new basketball game. They could also incorporate code from a single-player basketball game to create a two-player game with slightly different rules. Alternatively, students could remix an animated story and add their own conclusion and/or additional dialogue. (CA CCSS for ELA/Literacy W.3.3.B, W.3.3.D, W.4.3.B, W.4.3.E, W.5.3.B, W.5.3.E) Additionally, when creating a game that occurs on the moon or planets, students could incorporate and modify code that simulates gravity on Earth. They could modify the strength of the gravitational force based on the mass of the planet or moon. (CA NGSS: 5-PS2-1)

Standard Identifier: 6-8.CS.2

Grade Range: 6–8
Concept: Computing Systems
Subconcept: Hardware & Software
Practice(s): Creating Computational Artifacts (5.1)

Standard:
Design a project that combines hardware and software components to collect and exchange data.

Descriptive Statement:
Collecting and exchanging data involves input, output, storage, and processing. When possible, students select the components for their project designs by considering tradeoffs between factors such as functionality, cost, size, speed, accessibility, and aesthetics. Students do not need to implement their project design in order to meet this standard. For example, students could design a mobile tour app that displays information relevant to specific locations when the device is nearby or when the user selects a virtual stop on the tour. They select appropriate components, such as GPS or cellular-based geolocation tools, textual input, and speech recognition, to use in their project design. Alternatively, students could design a project that uses a sensor to collect the salinity, moisture, and temperature of soil. They may select a sensor that connects wirelessly through a Bluetooth connection because it supports greater mobility, or they could instead select a physical USB connection that does not require a separate power source. (CA NGSS: MS-ETS1-1, MS-ETS1-2)

Standard Identifier: 9-12.AP.12

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.1)

Standard:
Design algorithms to solve computational problems using a combination of original and existing algorithms.

Descriptive Statement:
Knowledge of common algorithms improves how people develop software, secure data, and store information. Some algorithms may be easier to implement in a particular programming language, work faster, require less memory to store data, and be applicable in a wider variety of situations than other algorithms. Algorithms used to search and sort data are common in a variety of software applications. For example, students could design an algorithm to calculate and display various sports statistics and use common sorting or mathematical algorithms (e.g., average) in the design of the overall algorithm. Alternatively, students could design an algorithm to implement a game and use existing randomization algorithms to place pieces randomly in starting positions or to control the "roll" of a dice or selection of a "card" from a deck.

Standard Identifier: 9-12.AP.17

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.3, 5.2)

Standard:
Create computational artifacts using modular design.

Descriptive Statement:
Computational artifacts are created by combining and modifying existing computational artifacts and/or by developing new artifacts. To reduce complexity, large programs can be designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. Students should create computational artifacts with interacting procedures, modules, and/or libraries. For example, students could incorporate a physics library into an animation of bouncing balls. Alternatively, students could integrate open-source JavaScript libraries to expand the functionality of a web application. Additionally, students could create their own game to teach Spanish vocabulary words using their own modular design (e.g., including methods to: control scoring, manage wordlists, manage access to different game levels, take input from the user, etc.).

Standard Identifier: 9-12S.AP.11

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Recognizing and Defining Computational Problems, Creating Computational Artifacts (3.1, 5.3)

Standard:
Implement an algorithm that uses artificial intelligence to overcome a simple challenge.

Descriptive Statement:
Artificial intelligence algorithms allow a computer to perceive and move in the world, use knowledge, and engage in problem solving. Students create a computational artifact that is able to carry out a simple task commonly performed by living organisms. Students do not need to realistically simulate human behavior or solve a complex problem in order to meet this standard. For example, students could implement an algorithm for playing tic-tac-toe that would select an appropriate location for the next move. Alternatively, students could implement an algorithm that allows a solar-powered robot to move to a sunny location when its batteries are low.

Standard Identifier: 9-12S.AP.12

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.2)

Standard:
Implement searching and sorting algorithms to solve computational problems.

Descriptive Statement:
One of the core uses of computers is to store, organize, and retrieve information when working with large amounts of data. Students create computational artifacts that use searching and/or sorting algorithms to retrieve, organize, or store information. Students do not need to select their algorithm based on efficiency. For example, students could write a script to sequence their classmates in order from youngest to oldest. Alternatively, students could write a program to find certain words within a text and report their location.

Standard Identifier: 9-12S.AP.17

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.3, 5.2)

Standard:
Construct solutions to problems using student-created components, such as procedures, modules, and/or objects.

Descriptive Statement:
Programmers often address complex tasks through design and decomposition using procedures and/or modules. In object-oriented programming languages, classes can support this decomposition. Students create a computational artifact that solves a problem through use of procedures, modules, and/or objects. This problem should be of sufficient complexity to benefit from decomposition and/or use of objects. For example, students could write a flashcard program in which each card is able to show both the question and answer and record user history. Alternatively, students could create a simulation of an ecosystem in which sprites carry out behaviors, such as consuming resources.

Standard Identifier: 9-12S.AP.18

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Modularity
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts, Testing and Refining Computational Artifacts (4.2, 5.3, 6.2)

Standard:
Demonstrate code reuse by creating programming solutions using libraries and APIs.

Descriptive Statement:
Code reuse is critical both for managing complexity in modern programs, but also in increasing programming efficiency and reliability by having programmers reuse code that has been highly vetted and tested. Software libraries allow developers to integrate common and often complex functionality without having to reimplement that functionality from scratch. Students identify, evaluate, and select appropriate application programming interfaces (APIs) from software libraries to use with a given language and operating system. They appropriately use resources such as technical documentation, online forums, and developer communities to learn about libraries and troubleshoot problems with APIs that they have chosen. For example, students could import charting and graphing modules to display data sets, adopt an online service that provides cloud storage and retrieval for a database used in a multiplayer game, or import location services into an app that identifies points of interest on a map. Libraries of APIs can be student-created or publicly available (e.g., common graphics libraries or map/navigation APIs).

Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881