Mathematics Standards
Results
Showing 31 - 40 of 48 Standards
Standard Identifier: F-IF.8.b
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)^12t, and y = (1.2)^t/10, and classify them as representing exponential growth or decay.
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)^12t, and y = (1.2)^t/10, and classify them as representing exponential growth or decay.
Standard Identifier: F-IF.9
Grade Range:
8–12
Domain:
Interpreting Functions
Discipline:
Math II
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]
Standard:
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
Standard Identifier: G-GPE.1
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Standard Identifier: G-GPE.2
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a parabola given a focus and directrix.
Translate between the geometric description and the equation for a conic section.
Standard:
Derive the equation of a parabola given a focus and directrix.
Standard Identifier: G-GPE.4
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2). [Include simple circle theorems.]
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the origin and containing the point (0, 2). [Include simple circle theorems.]
Standard Identifier: G-GPE.6
Grade Range:
8–12
Domain:
Expressing Geometric Properties with Equations
Discipline:
Math II
Conceptual Category:
Geometry
Cluster:
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Use coordinates to prove simple geometric theorems algebraically.
Standard:
Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Standard Identifier: F-IF.4
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Standard Identifier: F-IF.5
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Standard Identifier: F-IF.6
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *
Standard Identifier: F-IF.7.b
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Analyze functions using different representations. [Include rational and radical; focus on using key features to guide selection of appropriate type of model function.]
Standard:
Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. * Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. *
Analyze functions using different representations. [Include rational and radical; focus on using key features to guide selection of appropriate type of model function.]
Standard:
Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. * Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. *
Showing 31 - 40 of 48 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881