Mathematics Standards
Remove this criterion from the search
Conditional Probability and the Rules of Probability
Remove this criterion from the search
Expressing Geometric Properties with Equations
Remove this criterion from the search
Expressions and Equations
Remove this criterion from the search
Interpreting Functions
Remove this criterion from the search
Reasoning with Equations and Inequalities
Results
Showing 11 - 20 of 26 Standards
Standard Identifier: S-CP.5
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Understand independence and conditional probability and use them to interpret data. [Link to data from simulations or experiments.]
Standard:
Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. *
Understand independence and conditional probability and use them to interpret data. [Link to data from simulations or experiments.]
Standard:
Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. *
Standard Identifier: S-CP.6
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer in terms of the model. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer in terms of the model. *
Standard Identifier: S-CP.7
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. *
Standard Identifier: S-CP.8
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model. *
Standard Identifier: S-CP.9
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Use permutations and combinations to compute probabilities of compound events and solve problems. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Use permutations and combinations to compute probabilities of compound events and solve problems. *
Standard Identifier: A-REI.11
Grade Range:
9–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Represent and solve equations and inequalities graphically. [Combine polynomial, rational, radical, absolute value, and exponential functions.]
Standard:
Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. *
Represent and solve equations and inequalities graphically. [Combine polynomial, rational, radical, absolute value, and exponential functions.]
Standard:
Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. *
Standard Identifier: A-REI.2
Grade Range:
9–12
Domain:
Reasoning with Equations and Inequalities
Discipline:
Math III
Conceptual Category:
Algebra
Cluster:
Understand solving equations as a process of reasoning and explain the reasoning. [Simple radical and rational]
Standard:
Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
Understand solving equations as a process of reasoning and explain the reasoning. [Simple radical and rational]
Standard:
Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
Standard Identifier: F-IF.4
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Standard Identifier: F-IF.5
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Standard Identifier: F-IF.6
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *
Showing 11 - 20 of 26 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881