Mathematics Standards
Remove this criterion from the search
Functions
Remove this criterion from the search
Interpreting Functions
Remove this criterion from the search
Similarity, Right Triangles, and Trigonometry
Remove this criterion from the search
The Real Number System
Remove this criterion from the search
Using Probability to Make Decisions
Results
Showing 61 - 70 of 98 Standards
Standard Identifier: N-RN.1
Grade Range:
8–12
Domain:
The Real Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Extend the properties of exponents to rational exponents.
Standard:
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5^1/3 to be the cube root of 5 because we want (5^1/3)^3 = 5(^1/3)^3 to hold, so (5^1/3)^3 must equal 5.
Standard Identifier: N-RN.2
Grade Range:
8–12
Domain:
The Real Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Extend the properties of exponents to rational exponents.
Standard:
Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Standard Identifier: N-RN.3
Grade Range:
8–12
Domain:
The Real Number System
Discipline:
Math II
Conceptual Category:
Number and Quantity
Cluster:
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Use properties of rational and irrational numbers.
Standard:
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
Standard Identifier: S-MD.6
Grade Range:
8–12
Domain:
Using Probability to Make Decisions
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). *
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). *
Standard Identifier: S-MD.6
Grade Range:
8–12
Domain:
Using Probability to Make Decisions
Discipline:
Math II
Conceptual Category:
Statistics and Probability
Cluster:
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). *
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). *
Standard Identifier: S-MD.7
Grade Range:
8–12
Domain:
Using Probability to Make Decisions
Discipline:
Math II
Conceptual Category:
Statistics and Probability
Cluster:
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). *
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). *
Standard Identifier: S-MD.7
Grade Range:
8–12
Domain:
Using Probability to Make Decisions
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). *
Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]
Standard:
(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). *
Standard Identifier: F-IF.4
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Standard Identifier: F-IF.4
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Standard Identifier: F-IF.5
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Showing 61 - 70 of 98 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881