Mathematics Standards
Remove this criterion from the search
Expressions and Equations
Remove this criterion from the search
Interpreting Functions
Remove this criterion from the search
Measurement and Data
Remove this criterion from the search
Similarity, Right Triangles, and Trigonometry
Remove this criterion from the search
The Real Number System
Results
Showing 61 - 70 of 149 Standards
Standard Identifier: 7.EE.4.b
Grade:
7
Domain:
Expressions and Equations
Cluster:
Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
Standard:
Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the number of sales you need to make, and describe the solutions.
Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
Standard:
Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the number of sales you need to make, and describe the solutions.
Standard Identifier: F-IF.1
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
Standard Identifier: F-IF.1
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
Standard Identifier: F-IF.2
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Standard Identifier: F-IF.2
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Standard Identifier: F-IF.3
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n + 1) = f(n) + f(n − 1) for n ≥ 1.
Understand the concept of a function and use function notation. [Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences.]
Standard:
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n + 1) = f(n) + f(n − 1) for n ≥ 1.
Standard Identifier: F-IF.3
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n + 1) = f(n) + f(n − 1) for n ≥ 1.
Understand the concept of a function and use function notation. [Learn as general principle. Focus on linear and exponential (integer domains) and on arithmetic and geometric sequences.]
Standard:
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n + 1) = f(n) + f(n − 1) for n ≥ 1.
Standard Identifier: F-IF.4
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Math I
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Linear and exponential (linear domain)]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Interpret functions that arise in applications in terms of the context. [Linear and exponential (linear domain)]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Standard Identifier: F-IF.4
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Linear, exponential, and quadratic]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Interpret functions that arise in applications in terms of the context. [Linear, exponential, and quadratic]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Standard Identifier: F-IF.5
Grade Range:
7–12
Domain:
Interpreting Functions
Discipline:
Algebra I
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Linear, exponential, and quadratic]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
Interpret functions that arise in applications in terms of the context. [Linear, exponential, and quadratic]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
Showing 61 - 70 of 149 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881