Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 11 - 20 of 41 Standards

Standard Identifier: 3-LS4-2

Grade: 3
Disciplinary Core Idea: LS4.B: Natural Selection
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Life Science

Title: 3-LS4 Biological Evolution: Unity and Diversity

Performance Expectation: Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. [Clarification Statement: Examples of cause and effect relationships could be plants that have larger thorns than other plants may be less likely to be eaten by predators; and, animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.]

Disciplinary Core Idea(s):
LS4.B: Natural Selection Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Use evidence (e.g., observations, patterns) to construct an explanation.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RI.3.1.a–d: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2.a–d: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.2: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. SL.3.4: Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. a. Plan and deliver an informative/explanatory presentation on a topic that: organizes ideas around major points of information, follows a logical sequence, includes supporting details, uses clear and specific vocabulary, and provides a strong conclusion. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.

DCI Connections:
Connections to other DCIs in third grade: 3.LS4.C Articulation across grade-levels: MS.LS2.A; MS.LS3.B; MS.LS4.B

Standard Identifier: 4-ESS3-2

Grade: 4
Disciplinary Core Idea: ESS3.B: Natural Hazards, ETS1.B: Developing Possible Solutions
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Earth and Space Science

Title: 4-ESS3 Earth and Human Activity

Performance Expectation: Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.* [Clarification Statement: Examples of solutions could include designing an earthquake resistant building and improving monitoring of volcanic activity.] [Assessment Boundary: Assessment is limited to earthquakes, floods, tsunamis, and volcanic eruptions.]

Disciplinary Core Idea(s):
ESS3.B: Natural Hazards A variety of hazards result from natural processes (e.g., earthquakes, tsunamis, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (Note: This Disciplinary Core Idea can also be found in 3.WC.) ETS1.B: Designing Solutions to Engineering Problems Testing a solution involves investigating how well it performs under a range of likely conditions. (secondary to 4-ESS3-2)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services.

California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.OA.1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.

DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.C Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; MS.ESS2.A; MS.ESS3.B; MS.ETS1.B

Standard Identifier: 4-LS1-1

Grade: 4
Disciplinary Core Idea: LS1.A: Structure and Function
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-7: Engaging in Argument From Science
Content Area: Life Science

Title: 4-LS1 From Molecules to Organisms: Structures and Processes

Performance Expectation: Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. [Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin.] [Assessment Boundary: Assessment is limited to macroscopic structures within plant and animal systems.]

Disciplinary Core Idea(s):
LS1.A: Structure and Function Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction.

Science & Engineering Practices: Engaging in Argument from Evidence Construct an argument with evidence, data, and/or a model.

Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy W.4.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics 4.G.3: Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.

DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 1.LS1.A; 3.LS3.B; MS.LS1.A

Standard Identifier: 5-ESS1-1

Grade: 5
Disciplinary Core Idea: ESS1.A: The Universe and its Stars
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-7: Engaging in Argument From Science
Content Area: Earth and Space Science

Title: 5-ESS1 Earth’s Place in the Universe

Performance Expectation: Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from Earth. [Clarification Statement: Absolute brightness of stars is the result of a variety factors. Relative distance from Earth is one factor that affects apparent brightness and is the one selected to be addressed by the performance expectation.] [Assessment Boundary: Assessment is limited to relative distances, not sizes, of stars. Assessment does not include other factors that affect apparent brightness (such as stellar masses, age, stage).]

Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The sun is a star that appears larger and brighter than other stars because it is closer. Stars range greatly in their distance from Earth.

Science & Engineering Practices: Engaging in Argument from Evidence Support an argument with evidence, data, or a model.

Crosscutting Concepts: Scale, Proportion, and Quantity Natural objects exist from the very small to the immensely large.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RI.5.1.a-d: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. RI.5.8: Explain how an author uses reasons and evidence to support particular points in a text, identifying which reasons and evidence support which point(s). RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. W.5.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 5.NBT.2: Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10.

DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: MS.ESS1.A; MS.ESS1.B

Standard Identifier: MS-ESS1-1

Grade Range: 6–8
Disciplinary Core Idea: ESS1.A: The Universe and its Stars, ESS1.B: Earth and the Solar System
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: MS-ESS1 Earth’s Place in the Universe

Performance Expectation: Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. [Clarification Statement: Examples of models can be physical, graphical, or conceptual.]

Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars Patterns of the apparent motion of the sun, the moon, and stars in the sky can be observed, described, predicted, and explained with models. ESS1.B: Earth and the Solar System This model of the solar system can explain eclipses of the sun and the moon. Earth’s spin axis is fixed in direction over the short-term but tilted relative to its orbit around the sun. The seasons are a result of that tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year.

Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.

Crosscutting Concepts: Patterns Patterns can be used to identify cause-and-effect relationships. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.4: Model with mathematics. 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS2.B Articulation across grade-bands: 3.PS2.A; 5.PS2.B; 5.ESS1.B; HS.PS2.A; HS.PS2.B; HS.ESS1.B

Standard Identifier: MS-ESS1-2

Grade Range: 6–8
Disciplinary Core Idea: ESS1.A: The Universe and its Stars, ESS1.B: Earth and the Solar System
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: MS-ESS1 Earth’s Place in the Universe

Performance Expectation: Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. [Clarification Statement: Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as students’ school or state).] [Assessment Boundary: Assessment does not include Kepler’s Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.]

Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in the universe. ESS1.B: Earth and the Solar System The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them. The solar system appears to have formed from a disk of dust and gas, drawn together by gravity.

Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.

Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.4: Model with mathematics. 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-d: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS2.B; Articulation across grade-bands: 3.PS2.A; 5.PS2.B; 5.ESS1.A; 5.ESS1.B; HS.PS2.A; HS.PS2.B; HS.ESS1.A; HS.ESS1.B

Standard Identifier: MS-ESS2-5

Grade Range: 6–8
Disciplinary Core Idea: ESS2.C: The Roles of Water in Earth's Surface Processes, ESS2.D: Weather and Climate
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Earth and Space Science

Title: MS-ESS2 Earth’s Systems

Performance Expectation: Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions. [Clarification Statement: Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted within probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation).] [Assessment Boundary: Assessment does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations.]

Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns. ESS2.D: Weather and Climate Because these patterns are so complex, weather can only be predicted probabilistically.

Science & Engineering Practices: Planning and Carrying Out Investigations Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of conditions.

Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. WHST.6-8.8: Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. Mathematics MP.2: Reason abstractly and quantitatively. 6.NS.5: Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS2.A; MS.PS3.A; MS.PS3.B Articulation across grade-bands: 3.ESS2.D; 5.ESS2.A; HS.ESS2.C; HS.ESS2.D

Standard Identifier: MS-ESS2-6

Grade Range: 6–8
Disciplinary Core Idea: ESS2.C: The Roles of Water in Earth's Surface Processes, ESS2.D: Weather and Climate
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: MS-ESS2 Earth’s Systems

Performance Expectation: Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. [Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.] [Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.]

Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents. ESS2.D: Weather and Climate Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns. The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents.

Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.

Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS3.B; MS.PS4.B Articulation across grade-bands: 3.PS2.A; 3.ESS2.D; 5.ESS2.A; HS.PS2.B; HS.PS3.B; HS.ESS1.B; HS.ESS2.A; HS.ESS2.D

Standard Identifier: MS-ESS3-2

Grade Range: 6–8
Disciplinary Core Idea: ESS3.B: Natural Hazards
Cross Cutting Concept: CCC-1: Patterns
Science & Engineering Practice: SEP-4: Analyzing and Interpreting Data
Content Area: Earth and Space Science

Title: MS-ESS3 Earth and Human Activity

Performance Expectation: Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. [Clarification Statement: Emphasis is on how some natural hazards, such as volcanic eruptions and severe weather, are preceded by phenomena that allow for reliable predictions, but others, such as earthquakes, occur suddenly and with no notice, and thus are not yet predictable. Examples of natural hazards can be taken from interior processes (such as earthquakes and volcanic eruptions), surface processes (such as mass wasting and tsunamis), or severe weather events (such as hurricanes, tornadoes, and floods). Examples of data can include the locations, magnitudes, and frequencies of the natural hazards. Examples of technologies can be global (such as satellite systems to monitor hurricanes or forest fires) or local (such as building basements in tornado-prone regions or reservoirs to mitigate droughts).]

Disciplinary Core Idea(s):
ESS3.B: Natural Hazards Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the locations and likelihoods of future events.

Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings.

Crosscutting Concepts: Patterns Graphs, charts, and images can be used to identify patterns in data. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). Mathematics MP.2: Reason abstractly and quantitatively. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS3.C Articulation across grade-bands: 3.ESS3.B; 4.ESS3.B; HS.ESS2.B; HS.ESS2.D; HS.ESS3.B; HS.ESS3.D

Standard Identifier: MS-LS1-1

Grade Range: 6–8
Disciplinary Core Idea: LS1.A: Structure and Function
Cross Cutting Concept: CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Life Science

Title: MS-LS1 From Molecules to Organisms: Structures and Processes

Performance Expectation: Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. [Clarification Statement: Emphasis is on developing evidence that living things are made of cells, distinguishing between living and non-living things, and understanding that living things may be made of one cell or many and varied cells. Viruses, while not cells, have features that are both common with, and distinct from, cellular life.]

Disciplinary Core Idea(s):
LS1.A: Structure and Function All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multicellular).

Science & Engineering Practices: Planning and Carrying Out Investigations Conduct an investigation to produce data to serve as the basis for evidence that meet the goals of an investigation.

Crosscutting Concepts: Scale, Proportion, and Quantity Phenomena that can be observed at one scale may not be observable at another scale. Connections to Engineering, Technology and Applications of Science: Interdependence of Science, Engineering, and Technology Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.LS1.A

Showing 11 - 20 of 41 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881