Science (CA NGSS) Standards
Results
Showing 11 - 20 of 28 Standards
Standard Identifier: 4-ESS3-2
Grade:
4
Disciplinary Core Idea:
ESS3.B: Natural Hazards, ETS1.B: Developing Possible Solutions
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: 4-ESS3 Earth and Human Activity
Performance Expectation: Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.* [Clarification Statement: Examples of solutions could include designing an earthquake resistant building and improving monitoring of volcanic activity.] [Assessment Boundary: Assessment is limited to earthquakes, floods, tsunamis, and volcanic eruptions.]
Disciplinary Core Idea(s):
ESS3.B: Natural Hazards A variety of hazards result from natural processes (e.g., earthquakes, tsunamis, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (Note: This Disciplinary Core Idea can also be found in 3.WC.) ETS1.B: Designing Solutions to Engineering Problems Testing a solution involves investigating how well it performs under a range of likely conditions. (secondary to 4-ESS3-2)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services.
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.OA.1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.
DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.C Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; MS.ESS2.A; MS.ESS3.B; MS.ETS1.B
Performance Expectation: Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.* [Clarification Statement: Examples of solutions could include designing an earthquake resistant building and improving monitoring of volcanic activity.] [Assessment Boundary: Assessment is limited to earthquakes, floods, tsunamis, and volcanic eruptions.]
Disciplinary Core Idea(s):
ESS3.B: Natural Hazards A variety of hazards result from natural processes (e.g., earthquakes, tsunamis, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (Note: This Disciplinary Core Idea can also be found in 3.WC.) ETS1.B: Designing Solutions to Engineering Problems Testing a solution involves investigating how well it performs under a range of likely conditions. (secondary to 4-ESS3-2)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services.
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.OA.1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.
DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.C Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; MS.ESS2.A; MS.ESS3.B; MS.ETS1.B
Standard Identifier: 3-5-ETS1-2
Grade:
5
Disciplinary Core Idea:
ETS1.B: Developing Possible Solutions
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Engineering, Technology, and Applications of Science
Title: 3–5-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design problem.
Crosscutting Concepts: Influence of Engineering, Technology, and Science on Society and the Natural World Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy RI.5.1: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.OA.1-4: Represent and solve problems involving multiplication and division. 3.OA.5-6: Understand properties of multiplication and the relationship between multiplication and division. 3.OA.7: Multiply and divide within 100. 3.OA.8-9: Solve problems involving the four operations, and identify and explain patterns in arithmetic. 4.OA.1-3: Use the four operations with whole numbers to solve problems. 4.OA.4: Gain familiarity with factors and multiples. 4.OA.5: Generate and analyze patterns. 5.OA.1-2.1: Write and interpret numerical expressions. 5.OA.3: Analyze patterns and relationships.
DCI Connections:
Connections to 3-5-ETS1.B: Developing Possible Solutions Problems include: Fourth Grade: 4-ESS3-2 Articulation across grade-bands: K-2.ETS1.A; K-2.ETS1.B; K-2.ETS1.C; MS.ETS1.B; MS.ETS1.C
Performance Expectation: Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design problem.
Crosscutting Concepts: Influence of Engineering, Technology, and Science on Society and the Natural World Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands.
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy RI.5.1: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 3.OA.1-4: Represent and solve problems involving multiplication and division. 3.OA.5-6: Understand properties of multiplication and the relationship between multiplication and division. 3.OA.7: Multiply and divide within 100. 3.OA.8-9: Solve problems involving the four operations, and identify and explain patterns in arithmetic. 4.OA.1-3: Use the four operations with whole numbers to solve problems. 4.OA.4: Gain familiarity with factors and multiples. 4.OA.5: Generate and analyze patterns. 5.OA.1-2.1: Write and interpret numerical expressions. 5.OA.3: Analyze patterns and relationships.
DCI Connections:
Connections to 3-5-ETS1.B: Developing Possible Solutions Problems include: Fourth Grade: 4-ESS3-2 Articulation across grade-bands: K-2.ETS1.A; K-2.ETS1.B; K-2.ETS1.C; MS.ETS1.B; MS.ETS1.C
Standard Identifier: 3-5-ETS1-3
Grade:
5
Disciplinary Core Idea:
ETS1.B: Developing Possible Solutions, ETS1.C: Optimizing the Design Solution
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Engineering, Technology, and Applications of Science
Title: 3–5-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to 3-5-ETS1.B: Developing Possible Solutions Problems include: Fourth Grade: 4-ESS3-2 Connections to K-2-ETS1.C: Optimizing the Design Solution include: Fourth Grade: 4-PS4-3 Articulation across grade-bands: K-2.ETS1.A; K-2.ETS1.C; MS.ETS1.B; MS.ETS1.C
Performance Expectation: Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to 3-5-ETS1.B: Developing Possible Solutions Problems include: Fourth Grade: 4-ESS3-2 Connections to K-2-ETS1.C: Optimizing the Design Solution include: Fourth Grade: 4-PS4-3 Articulation across grade-bands: K-2.ETS1.A; K-2.ETS1.C; MS.ETS1.B; MS.ETS1.C
Standard Identifier: 5-ESS3-1
Grade:
5
Disciplinary Core Idea:
ESS3.C: Human Impacts on Earth Systems
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area:
Earth and Space Science
Title: 5-ESS3 Earth and Human Activity
Performance Expectation: Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.
Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth’s resources and environments.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Science findings are limited to questions that can be answered with empirical evidence.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.5.1: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. RI.5.9.a-b: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: MS.ESS3.A; MS.ESS3.C; MS.ESS3.D
Performance Expectation: Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.
Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth’s resources and environments.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Science findings are limited to questions that can be answered with empirical evidence.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.5.1: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. RI.5.9.a-b: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: MS.ESS3.A; MS.ESS3.C; MS.ESS3.D
Standard Identifier: MS-ESS3-3
Grade Range:
6–8
Disciplinary Core Idea:
ESS3.C: Human Impacts on Earth Systems
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: MS-ESS3 Earth and Human Activity
Performance Expectation: Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.* [Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).]
Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth’s environments can have different impacts (negative and positive) for different living things. Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific principles to design an object, tool, process or system.
Crosscutting Concepts: Cause and Effect Relationships can be classified as causal or correlational, and correlation does not necessarily imply causation. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. WHST.6–8.8: Gather relevant information from multiple print and digital sources (primary and secondary), using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. Mathematics 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A; MS.LS2.C ; MS.LS4.D Articulation across grade-bands: 3.LS2.C; 3.LS4.D; 5.ESS3.C; HS.LS2.C; HS.LS4.C; HS.LS4.D; HS.ESS2.C; HS.ESS2.D; HS.ESS2.E; HS.ESS3.C; HS.ESS3.D
Performance Expectation: Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.* [Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).]
Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth’s environments can have different impacts (negative and positive) for different living things. Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific principles to design an object, tool, process or system.
Crosscutting Concepts: Cause and Effect Relationships can be classified as causal or correlational, and correlation does not necessarily imply causation. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. WHST.6–8.8: Gather relevant information from multiple print and digital sources (primary and secondary), using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. Mathematics 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A; MS.LS2.C ; MS.LS4.D Articulation across grade-bands: 3.LS2.C; 3.LS4.D; 5.ESS3.C; HS.LS2.C; HS.LS4.C; HS.LS4.D; HS.ESS2.C; HS.ESS2.D; HS.ESS2.E; HS.ESS3.C; HS.ESS3.D
Standard Identifier: MS-ESS3-4
Grade Range:
6–8
Disciplinary Core Idea:
ESS3.C: Human Impacts on Earth Systems
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Earth and Space Science
Title: MS-ESS3 Earth and Human Activity
Performance Expectation: Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems. [Clarification Statement: Examples of evidence include grade-appropriate databases on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts can include changes to the appearance, composition, and structure of Earth’s systems as well as the rates at which they change. The consequences of increases in human populations and consumption of natural resources are described by science, but science does not make the decisions for the actions society takes.]
Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.
Science & Engineering Practices: Engaging in Argument from Evidence Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.
Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. WHST.6-8.1.a-f: Write arguments focused on discipline content. WHST.6-8.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A; MS.LS4.D Articulation across grade-bands: 3.LS2.C; 3.LS4.D; 5.ESS3.C; HS.LS2.A; HS.LS2.C; HS.LS4.C; HS.LS4.D; HS.ESS2.E; HS.ESS3.A; HS.ESS3.C
Performance Expectation: Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems. [Clarification Statement: Examples of evidence include grade-appropriate databases on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts can include changes to the appearance, composition, and structure of Earth’s systems as well as the rates at which they change. The consequences of increases in human populations and consumption of natural resources are described by science, but science does not make the decisions for the actions society takes.]
Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.
Science & Engineering Practices: Engaging in Argument from Evidence Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.
Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. WHST.6-8.1.a-f: Write arguments focused on discipline content. WHST.6-8.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 7.RP.2.a-d: Recognize and represent proportional relationships between quantities. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A; MS.LS4.D Articulation across grade-bands: 3.LS2.C; 3.LS4.D; 5.ESS3.C; HS.LS2.A; HS.LS2.C; HS.LS4.C; HS.LS4.D; HS.ESS2.E; HS.ESS3.A; HS.ESS3.C
Standard Identifier: MS-ETS1-2
Grade Range:
6–8
Disciplinary Core Idea:
ETS1.B: Developing Possible Solutions
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Engineering, Technology, and Applications of Science
Title: MS-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem.
Science & Engineering Practices: Engaging in Argument from Evidence Evaluate competing design solutions based on jointly developed and agreed-upon design criteria.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of consideration and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. WHST.6-8.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6; MS-PS3-3 Life Science: MS-LS2-5 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C; HS.ETS1.A; HS.ETS1.B
Performance Expectation: Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem.
Science & Engineering Practices: Engaging in Argument from Evidence Evaluate competing design solutions based on jointly developed and agreed-upon design criteria.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of consideration and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. WHST.6-8.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6; MS-PS3-3 Life Science: MS-LS2-5 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C; HS.ETS1.A; HS.ETS1.B
Standard Identifier: MS-ETS1-3
Grade Range:
6–8
Disciplinary Core Idea:
ETS1.B: Developing Possible Solutions, ETS1.C: Optimizing the Design Solution
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Engineering, Technology, and Applications of Science
Title: MS-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors. ETS1.C: Optimizing the Design Solution Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process—that is, some of those characteristics may be incorporated into the new design.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of consideration and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6; MS-PS3-3 Life Science: MS-LS2-5 Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C; HS.ETS1.B; HS.ETS1.C
Performance Expectation: Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors. ETS1.C: Optimizing the Design Solution Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process—that is, some of those characteristics may be incorporated into the new design.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of consideration and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6; MS-PS3-3 Life Science: MS-LS2-5 Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C; HS.ETS1.B; HS.ETS1.C
Standard Identifier: MS-ETS1-4
Grade Range:
6–8
Disciplinary Core Idea:
ETS1.B: Developing Possible Solutions, ETS1.C: Optimizing the Design Solution
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Engineering, Technology, and Applications of Science
Title: MS-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. Models of all kinds are important for testing solutions. ETS1.C: Optimizing the Design Solution The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution.
Science & Engineering Practices: Developing and Using Models Develop a model to generate data to test ideas about designed systems, including those representing inputs and outputs.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of consideration and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6; MS-PS3-3 Life Science: MS-LS2-5 Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6 Articulation across grade-bands: 3-5.ETS1.B; 3-5.ETS1.C; HS.ETS1.B; HS.ETS1.C
Performance Expectation: Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. Models of all kinds are important for testing solutions. ETS1.C: Optimizing the Design Solution The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution.
Science & Engineering Practices: Developing and Using Models Develop a model to generate data to test ideas about designed systems, including those representing inputs and outputs.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of consideration and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6; MS-PS3-3 Life Science: MS-LS2-5 Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6 Articulation across grade-bands: 3-5.ETS1.B; 3-5.ETS1.C; HS.ETS1.B; HS.ETS1.C
Standard Identifier: MS-LS2-5
Grade Range:
6–8
Disciplinary Core Idea:
LS2.C: Ecosystem Dynamics, Functioning, and Resilience, LS4.D: Biodiversity and Humans, ETS1.B: Developing Possible Solutions
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: MS-LS2 Ecosystems: Interactions, Energy, and Dynamics
Performance Expectation: Evaluate competing design solutions for maintaining biodiversity and ecosystem services.* [Clarification Statement: Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.]
Disciplinary Core Idea(s):
LS2.C: Ecosystem Dynamics, Functioning, and Resilience Biodiversity describes the variety of species found in Earth’s terrestrial and oceanic ecosystems. The completeness or integrity of an ecosystem’s biodiversity is often used as a measure of its health. LS4.D: Biodiversity and Humans Changes in biodiversity can influence humans’ resources, such as food, energy, and medicines, as well as ecosystem services that humans rely on—for example, water purification and recycling. (secondary to MS-LS2-5) ETS1.B: Developing Possible Solutions There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. (secondary to MS-LS2-5)
Science & Engineering Practices: Engaging in Argument from Evidence Evaluate competing design solutions based on jointly developed and agreed-upon design criteria.
Crosscutting Concepts: Stability and Change Small changes in one part of a system might cause large changes in another part. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World The use of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.8: Distinguish among facts, reasoned judgment based on research findings, and speculation in a text. RI.8.8: Trace and evaluate the argument and specific claims in a text, assessing whether the reasoning is sound and the evidence is relevant and sufficient to support the claims. Mathematics MP.4: Model with mathematics. 6.RP.3.a-d: Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS3.C Articulation across grade-bands: HS.LS2.A; HS.LS2.C; HS.LS4.D; HS.ESS3.A; HS.ESS3.C; HS.ESS3.D
Performance Expectation: Evaluate competing design solutions for maintaining biodiversity and ecosystem services.* [Clarification Statement: Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.]
Disciplinary Core Idea(s):
LS2.C: Ecosystem Dynamics, Functioning, and Resilience Biodiversity describes the variety of species found in Earth’s terrestrial and oceanic ecosystems. The completeness or integrity of an ecosystem’s biodiversity is often used as a measure of its health. LS4.D: Biodiversity and Humans Changes in biodiversity can influence humans’ resources, such as food, energy, and medicines, as well as ecosystem services that humans rely on—for example, water purification and recycling. (secondary to MS-LS2-5) ETS1.B: Developing Possible Solutions There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. (secondary to MS-LS2-5)
Science & Engineering Practices: Engaging in Argument from Evidence Evaluate competing design solutions based on jointly developed and agreed-upon design criteria.
Crosscutting Concepts: Stability and Change Small changes in one part of a system might cause large changes in another part. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World The use of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.8: Distinguish among facts, reasoned judgment based on research findings, and speculation in a text. RI.8.8: Trace and evaluate the argument and specific claims in a text, assessing whether the reasoning is sound and the evidence is relevant and sufficient to support the claims. Mathematics MP.4: Model with mathematics. 6.RP.3.a-d: Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS3.C Articulation across grade-bands: HS.LS2.A; HS.LS2.C; HS.LS4.D; HS.ESS3.A; HS.ESS3.C; HS.ESS3.D
Showing 11 - 20 of 28 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881