Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 1 - 9 of 9 Standards

Standard Identifier: K-ESS2-2

Grade: K
Disciplinary Core Idea: ESS2.E: Biogeology, ESS3.C: Human Impacts on Earth Systems
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-7: Engaging in Argument From Science
Content Area: Earth and Space Science

Title: K-ESS2 Earth’s Systems

Performance Expectation: Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs. [Clarification Statement: Examples of plants and animals changing their environment could include a squirrel digs in the ground to hide its food and tree roots can break concrete.]

Disciplinary Core Idea(s):
ESS2.E: Biogeology Plants and animals can change their environment. ESS3.C: Human Impacts on Earth Systems Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things. (secondary to K-ESS2-2)

Science & Engineering Practices: Engaging in Argument from Evidence Construct an argument with evidence to support a claim.

Crosscutting Concepts: Systems and System Models Systems in the natural and designed world have parts that work together.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RI.K.1: With prompting and support, ask and answer questions about key details in a text. W.K.1: Use a combination of drawing, dictating, and writing to compose opinion pieces in which they tell a reader the topic or the name of the book they are writing about and state an opinion or preference about the topic or book. W.K.2: Use a combination of drawing, dictating, and writing to compose informative/explanatory texts in which they name what they are writing about and supply some information about the topic.

DCI Connections:
Connections to other DCIs in kindergarten: N/A Articulation across grade-levels: 4.ESS2.E; 5.ESS2.A

Standard Identifier: 4-LS1-1

Grade: 4
Disciplinary Core Idea: LS1.A: Structure and Function
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-7: Engaging in Argument From Science
Content Area: Life Science

Title: 4-LS1 From Molecules to Organisms: Structures and Processes

Performance Expectation: Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. [Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin.] [Assessment Boundary: Assessment is limited to macroscopic structures within plant and animal systems.]

Disciplinary Core Idea(s):
LS1.A: Structure and Function Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction.

Science & Engineering Practices: Engaging in Argument from Evidence Construct an argument with evidence, data, and/or a model.

Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy W.4.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics 4.G.3: Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.

DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 1.LS1.A; 3.LS3.B; MS.LS1.A

Standard Identifier: 5-LS2-1

Grade: 5
Disciplinary Core Idea: LS2.A: Interdependent Relationships in Ecosystems, LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: 5-LS2 Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation: Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. [Clarification Statement: Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems, and the Earth.] [Assessment Boundary: Assessment does not include molecular explanations.]

Disciplinary Core Idea(s):
LS2.A: Interdependent Relationships in Ecosystems The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plants parts and animals) and therefore operate as “decomposers.” Decomposition eventually restores (recycles) some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem. LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment.

Science & Engineering Practices: Developing and Using Models Develop a model to describe phenomena. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Science explanations describe the mechanisms for natural events.

Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.

DCI Connections:
Connections to other DCIs in fifth grade: 5.PS1.A; 5.ESS2.A Articulation across grade-levels: 2.PS1.A; 2.LS4.D; 4.ESS2.E; MS.LS1.C; MS.LS2.A; MS.LS2.B; MS.PS3.D

Standard Identifier: MS-ESS2-6

Grade Range: 6–8
Disciplinary Core Idea: ESS2.C: The Roles of Water in Earth's Surface Processes, ESS2.D: Weather and Climate
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: MS-ESS2 Earth’s Systems

Performance Expectation: Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. [Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.] [Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.]

Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents. ESS2.D: Weather and Climate Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns. The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents.

Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.

Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS3.B; MS.PS4.B Articulation across grade-bands: 3.PS2.A; 3.ESS2.D; 5.ESS2.A; HS.PS2.B; HS.PS3.B; HS.ESS1.B; HS.ESS2.A; HS.ESS2.D

Standard Identifier: MS-LS1-3

Grade Range: 6–8
Disciplinary Core Idea: LS1.A: Structure and Function
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-7: Engaging in Argument From Science
Content Area: Life Science

Title: MS-LS1 From Molecules to Organisms: Structures and Processes

Performance Expectation: Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. [Clarification Statement: Emphasis is on the conceptual understanding that cells form tissues and tissues form organs specialized for particular body functions. Examples could include the interaction of subsystems within a system and the normal functioning of those systems.] [Assessment Boundary: Assessment does not include the mechanism of one body system independent of others. Assessment is limited to the circulatory, excretory, digestive, respiratory, muscular, and nervous systems.]

Disciplinary Core Idea(s):
LS1.A: Structure and Function In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions.

Science & Engineering Practices: Engaging in Argument from Evidence Use an oral and written argument supported by evidence to support or refute an explanation or a model for a phenomenon.

Crosscutting Concepts: Systems and System Models Systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. Connections to Nature of Science: Science is a Human Endeavor Scientists and engineers are guided by habits of mind such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RI.6.8: Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.LS1.A

Standard Identifier: HS-ESS2-7

Grade Range: 9–12
Disciplinary Core Idea: ESS2.D: Weather and Climate, ESS2.E: Biogeology
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-7: Engaging in Argument From Science
Content Area: Earth and Space Science

Title: HS-ESS2 Earth’s Systems

Performance Expectation: Construct an argument based on evidence about the simultaneous coevolution of Earth’s systems and life on Earth. [Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth’s other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth’s surface. Examples include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms.] [Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth’s other systems.]

Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen. ESS2.E: Biogeology The many dynamic and delicate feedbacks between the biosphere and other Earth systems cause a continual co-evolution of Earth’s surface and the life that exists on it.

Science & Engineering Practices: Engaging in Argument from Evidence Construct an oral and written argument or counter-arguments based on data and evidence.

Crosscutting Concepts: Stability and Change Much of science deals with constructing explanations of how things change and how they remain stable.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.1.a-e: Write arguments focused on discipline-specific content.

DCI Connections:
Connections to other DCIs in this grade-band: HS.LS2.A; HS.LS2.C; HS.LS4.A; HS.LS4.B; HS.LS4.C; HS.LS4.D Articulation across grade-bands: MS.LS2.A; MS.LS2.C; MS.LS4.A; MS.LS4.B; MS.LS4.C; MS.ESS1.C; MS.ESS2.A; MS.ESS2.C; MS.ESS3.C

Standard Identifier: HS-LS1-2

Grade Range: 9–12
Disciplinary Core Idea: LS1.A: Structure and Function
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: HS-LS1 From Molecules to Organisms: Structures and Processes

Performance Expectation: Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. [Clarification Statement: Emphasis is on functions at the organism system level such as nutrient uptake, water delivery, and organism movement in response to neural stimuli. An example of an interacting system could be an artery depending on the proper function of elastic tissue and smooth muscle to regulate and deliver the proper amount of blood within the circulatory system.] [Assessment Boundary: Assessment does not include interactions and functions at the molecular or chemical reaction level.]

Disciplinary Core Idea(s):
LS1.A: Structure and Function Multicellular organisms have a hierarchical structural organization, in which any one system is made up of numerous parts and is itself a component of the next level.

Science & Engineering Practices: Developing and Using Models Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system.

Crosscutting Concepts: Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS1.A

Standard Identifier: HS-LS1-3

Grade Range: 9–12
Disciplinary Core Idea: LS1.A: Structure and Function
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Life Science

Title: HS-LS1 From Molecules to Organisms: Structures and Processes

Performance Expectation: Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis. [Clarification Statement: Examples of investigations could include heart rate response to exercise, stomach response to moisture and temperature, and root development in response to water levels.] [Assessment Boundary: Assessment does not include the cellular processes involved in the feedback mechanism.]

Disciplinary Core Idea(s):
LS1.A: Structure and Function Feedback mechanisms maintain a living system’s internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range. Feedback mechanisms can encourage (through positive feedback) or discourage (negative feedback) what is going on inside the living system.

Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. Connections to Nature of Science: Scientific Investigations Use a Variety of Methods Scientific inquiry is characterized by a common set of values that include: logical thinking, precision, open-mindedness, objectivity, skepticism, replicability of results, and honest and ethical reporting of findings.

Crosscutting Concepts: Stability and Change Feedback (negative or positive) can stabilize or destabilize a system.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. WHST.11-12.8: Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS1.A

Standard Identifier: HS-LS1-4

Grade Range: 9–12
Disciplinary Core Idea: LS1.B: Growth and Development of Organisms
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: HS-LS1 From Molecules to Organisms: Structures and Processes

Performance Expectation: Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms. [Assessment Boundary: Assessment does not include specific gene control mechanisms or rote memorization of the steps of mitosis.]

Disciplinary Core Idea(s):
LS1.B: Growth and Development of Organisms In multicellular organisms individual cells grow and then divide via a process called mitosis, thereby allowing the organism to grow. The organism begins as a single cell (fertilized egg) that divides successively to produce many cells, with each parent cell passing identical genetic material (two variants of each chromosome pair) to both daughter cells. Cellular division and differentiation produce and maintain a complex organism, composed of systems of tissues and organs that work together to meet the needs of the whole organism.

Science & Engineering Practices: Developing and Using Models Use a model based on evidence to illustrate the relationships between systems or between components of a system.

Crosscutting Concepts: Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.4: Model with mathematics. F-IF.7.a-e: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. F-BF.1.a-c: Write a function that describes a relationship between two quantities.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS1.A; MS.LS1.B; MS.LS3.A

Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881