Science (CA NGSS) Standards
Remove this criterion from the search
ESS2.B: Plate Tectonics and Large-Scale System Interactions
Remove this criterion from the search
ESS2.D: Weather and Climate
Remove this criterion from the search
ESS3.C: Human Impacts on Earth Systems
Remove this criterion from the search
LS1.D: Information Processing
Remove this criterion from the search
LS2.C: Ecosystem Dynamics, Functioning, and Resilience
Remove this criterion from the search
PS1.A: Structure and Properties of Matter
Results
Showing 11 - 20 of 45 Standards
Standard Identifier: 4-ESS2-2
Grade:
4
Disciplinary Core Idea:
ESS2.B: Plate Tectonics and Large-Scale System Interactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: 4-ESS2 Earth’s Systems
Performance Expectation: Analyze and interpret data from maps to describe patterns of Earth’s features. [Clarification Statement: Maps can include topographic maps of Earth’s land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.]
Disciplinary Core Idea(s):
ESS2.B: Plate Tectonics and Large-Scale System Interactions The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of Earth.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to make sense of phenomena using logical reasoning.
Crosscutting Concepts: Patterns Patterns can be used as evidence to support an explanation.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.7: Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears. Mathematics 4.MD.2: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS2.B; 2.ESS2.C; 5.ESS2.C; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Performance Expectation: Analyze and interpret data from maps to describe patterns of Earth’s features. [Clarification Statement: Maps can include topographic maps of Earth’s land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.]
Disciplinary Core Idea(s):
ESS2.B: Plate Tectonics and Large-Scale System Interactions The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of Earth.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to make sense of phenomena using logical reasoning.
Crosscutting Concepts: Patterns Patterns can be used as evidence to support an explanation.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.7: Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears. Mathematics 4.MD.2: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS2.B; 2.ESS2.C; 5.ESS2.C; MS.ESS1.C; MS.ESS2.A; MS.ESS2.B
Standard Identifier: 4-LS1-2
Grade:
4
Disciplinary Core Idea:
LS1.D: Information Processing
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Life Science
Title: 4-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways. [Clarification Statement: Emphasis is on systems of information transfer.] [Assessment Boundary: Assessment does not include the mechanisms by which the brain stores and recalls information or the mechanisms of how sensory receptors function.]
Disciplinary Core Idea(s):
LS1.D: Information Processing Different sense receptors are specialized for particular kinds of information, which may be then processed by the animal’s brain. Animals are able to use their perceptions and memories to guide their actions.
Science & Engineering Practices: Developing and Using Models Use a model to test interactions concerning the functioning of a natural system.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy SL.4.5: Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 1.LS1.D; MS.LS1.A; MS.LS1.D
Performance Expectation: Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways. [Clarification Statement: Emphasis is on systems of information transfer.] [Assessment Boundary: Assessment does not include the mechanisms by which the brain stores and recalls information or the mechanisms of how sensory receptors function.]
Disciplinary Core Idea(s):
LS1.D: Information Processing Different sense receptors are specialized for particular kinds of information, which may be then processed by the animal’s brain. Animals are able to use their perceptions and memories to guide their actions.
Science & Engineering Practices: Developing and Using Models Use a model to test interactions concerning the functioning of a natural system.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy SL.4.5: Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 1.LS1.D; MS.LS1.A; MS.LS1.D
Standard Identifier: 5-ESS3-1
Grade:
5
Disciplinary Core Idea:
ESS3.C: Human Impacts on Earth Systems
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area:
Earth and Space Science
Title: 5-ESS3 Earth and Human Activity
Performance Expectation: Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.
Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth’s resources and environments.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Science findings are limited to questions that can be answered with empirical evidence.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.5.1: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. RI.5.9.a-b: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: MS.ESS3.A; MS.ESS3.C; MS.ESS3.D
Performance Expectation: Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.
Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth’s resources and environments.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions. Connections to Nature of Science: Science Addresses Questions About the Natural and Material World Science findings are limited to questions that can be answered with empirical evidence.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.5.1: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. RI.5.9.a-b: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: MS.ESS3.A; MS.ESS3.C; MS.ESS3.D
Standard Identifier: 5-PS1-1
Grade:
5
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Physical Science
Title: 5-PS1 Matter and Its Interactions
Performance Expectation: Develop a model to describe that matter is made of particles too small to be seen. [Clarification Statement: Examples of evidence supporting a model could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects.
Science & Engineering Practices: Developing and Using Models Develop a model to describe phenomena.
Crosscutting Concepts: Scale, Proportion, and Quantity Natural objects exist from the very small to the immensely large.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 5.NBT.2: Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. 5.NF.7.a-c: Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. 5.MD.3.a-b: Recognize volume as an attribute of solid figures and understand concepts of volume measurement. 5.MD.4: Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.PS1.A; MS.PS1.A
Performance Expectation: Develop a model to describe that matter is made of particles too small to be seen. [Clarification Statement: Examples of evidence supporting a model could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects.
Science & Engineering Practices: Developing and Using Models Develop a model to describe phenomena.
Crosscutting Concepts: Scale, Proportion, and Quantity Natural objects exist from the very small to the immensely large.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 5.NBT.2: Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. 5.NF.7.a-c: Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. 5.MD.3.a-b: Recognize volume as an attribute of solid figures and understand concepts of volume measurement. 5.MD.4: Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.PS1.A; MS.PS1.A
Standard Identifier: 5-PS1-2
Grade:
5
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter, PS1.B: Chemical Reactions
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-5: Using Mathematics and Computational Thinking
Content Area:
Physical Science
Title: 5-PS1 Matter and Its Interactions
Performance Expectation: Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. [Clarification Statement: Examples of reactions or changes could include phase changes, dissolving, and mixing that form new substances.] [Assessment Boundary: Assessment does not include distinguishing mass and weight.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. PS1.B: Chemical Reactions No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.)
Science & Engineering Practices: Using Mathematics and Computational Thinking Measure and graph quantities such as weight to address scientific and engineering questions and problems.
Crosscutting Concepts: Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes consistent patterns in natural systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 5.MD.1: Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real-world problems.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.PS1.A; MS.PS1.A
Performance Expectation: Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. [Clarification Statement: Examples of reactions or changes could include phase changes, dissolving, and mixing that form new substances.] [Assessment Boundary: Assessment does not include distinguishing mass and weight.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. PS1.B: Chemical Reactions No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.)
Science & Engineering Practices: Using Mathematics and Computational Thinking Measure and graph quantities such as weight to address scientific and engineering questions and problems.
Crosscutting Concepts: Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes consistent patterns in natural systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 5.MD.1: Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real-world problems.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.PS1.A; MS.PS1.A
Standard Identifier: 5-PS1-3
Grade:
5
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Physical Science
Title: 5-PS1 Matter and Its Interactions
Performance Expectation: Make observations and measurements to identify materials based on their properties. [Clarification Statement: Examples of materials to be identified could include baking soda and other powders, metals, minerals, and liquids. Examples of properties could include color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, and solubility; density is not intended as an identifiable property.] [Assessment Boundary: Assessment does not include density or distinguishing mass and weight.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.)
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon.
Crosscutting Concepts: Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.PS1.A; MS.PS1.A
Performance Expectation: Make observations and measurements to identify materials based on their properties. [Clarification Statement: Examples of materials to be identified could include baking soda and other powders, metals, minerals, and liquids. Examples of properties could include color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, and solubility; density is not intended as an identifiable property.] [Assessment Boundary: Assessment does not include density or distinguishing mass and weight.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.)
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon.
Crosscutting Concepts: Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically.
DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.PS1.A; MS.PS1.A
Standard Identifier: MS-ESS2-3
Grade Range:
6–8
Disciplinary Core Idea:
ESS1.C: The History of Planet Earth, ESS2.B: Plate Tectonics and Large-Scale System Interactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Earth and Space Science
Title: MS-ESS2 Earth’s Systems
Performance Expectation: Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. [Clarification Statement: Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).] [Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Tectonic processes continually generate new ocean sea floor at ridges and destroy old sea floor at trenches. (HS.ESS1.C GBE) (secondary to MS-ESS2-3) ESS2.B: Plate Tectonics and Large-Scale System Interactions Maps of ancient land and water patterns, based on investigations of rocks and fossils, make clear how Earth’s plates have moved great distances, collided, and spread apart.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to provide evidence for phenomena. Connections to Nature of Science: Scientific Knowledge is Open to Revision in Light of New Evidence Science findings are frequently revised and/or reinterpreted based on new evidence.
Crosscutting Concepts: Patterns Patterns in rates of change and other numerical relationships can provide information about natural systems.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. Mathematics MP.2: Reason abstractly and quantitatively. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS4.A Articulation across grade-bands: 3.LS4.A; 3.ESS3.B; 4.ESS1.C; 4.ESS2.B; 4.ESS3.B; HS.LS4.A; HS.LS4.C; HS.ESS1.C; HS.ESS2.A; HS.ESS2.B
Performance Expectation: Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. [Clarification Statement: Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).] [Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed.]
Disciplinary Core Idea(s):
ESS1.C: The History of Planet Earth Tectonic processes continually generate new ocean sea floor at ridges and destroy old sea floor at trenches. (HS.ESS1.C GBE) (secondary to MS-ESS2-3) ESS2.B: Plate Tectonics and Large-Scale System Interactions Maps of ancient land and water patterns, based on investigations of rocks and fossils, make clear how Earth’s plates have moved great distances, collided, and spread apart.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to provide evidence for phenomena. Connections to Nature of Science: Scientific Knowledge is Open to Revision in Light of New Evidence Science findings are frequently revised and/or reinterpreted based on new evidence.
Crosscutting Concepts: Patterns Patterns in rates of change and other numerical relationships can provide information about natural systems.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. Mathematics MP.2: Reason abstractly and quantitatively. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS4.A Articulation across grade-bands: 3.LS4.A; 3.ESS3.B; 4.ESS1.C; 4.ESS2.B; 4.ESS3.B; HS.LS4.A; HS.LS4.C; HS.ESS1.C; HS.ESS2.A; HS.ESS2.B
Standard Identifier: MS-ESS2-5
Grade Range:
6–8
Disciplinary Core Idea:
ESS2.C: The Roles of Water in Earth's Surface Processes, ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Earth and Space Science
Title: MS-ESS2 Earth’s Systems
Performance Expectation: Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions. [Clarification Statement: Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted within probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation).] [Assessment Boundary: Assessment does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations.]
Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns. ESS2.D: Weather and Climate Because these patterns are so complex, weather can only be predicted probabilistically.
Science & Engineering Practices: Planning and Carrying Out Investigations Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of conditions.
Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. WHST.6-8.8: Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. Mathematics MP.2: Reason abstractly and quantitatively. 6.NS.5: Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS2.A; MS.PS3.A; MS.PS3.B Articulation across grade-bands: 3.ESS2.D; 5.ESS2.A; HS.ESS2.C; HS.ESS2.D
Performance Expectation: Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions. [Clarification Statement: Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted within probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation).] [Assessment Boundary: Assessment does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations.]
Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns. ESS2.D: Weather and Climate Because these patterns are so complex, weather can only be predicted probabilistically.
Science & Engineering Practices: Planning and Carrying Out Investigations Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of conditions.
Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. WHST.6-8.8: Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. Mathematics MP.2: Reason abstractly and quantitatively. 6.NS.5: Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS2.A; MS.PS3.A; MS.PS3.B Articulation across grade-bands: 3.ESS2.D; 5.ESS2.A; HS.ESS2.C; HS.ESS2.D
Standard Identifier: MS-ESS2-6
Grade Range:
6–8
Disciplinary Core Idea:
ESS2.C: The Roles of Water in Earth's Surface Processes, ESS2.D: Weather and Climate
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Earth and Space Science
Title: MS-ESS2 Earth’s Systems
Performance Expectation: Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. [Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.] [Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.]
Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents. ESS2.D: Weather and Climate Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns. The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS3.B; MS.PS4.B Articulation across grade-bands: 3.PS2.A; 3.ESS2.D; 5.ESS2.A; HS.PS2.B; HS.PS3.B; HS.ESS1.B; HS.ESS2.A; HS.ESS2.D
Performance Expectation: Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. [Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.] [Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.]
Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents. ESS2.D: Weather and Climate Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns. The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents.
Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.
Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.
California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A; MS.PS3.B; MS.PS4.B Articulation across grade-bands: 3.PS2.A; 3.ESS2.D; 5.ESS2.A; HS.PS2.B; HS.PS3.B; HS.ESS1.B; HS.ESS2.A; HS.ESS2.D
Standard Identifier: MS-ESS3-3
Grade Range:
6–8
Disciplinary Core Idea:
ESS3.C: Human Impacts on Earth Systems
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: MS-ESS3 Earth and Human Activity
Performance Expectation: Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.* [Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).]
Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth’s environments can have different impacts (negative and positive) for different living things. Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific principles to design an object, tool, process or system.
Crosscutting Concepts: Cause and Effect Relationships can be classified as causal or correlational, and correlation does not necessarily imply causation. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. WHST.6–8.8: Gather relevant information from multiple print and digital sources (primary and secondary), using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. Mathematics 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A; MS.LS2.C ; MS.LS4.D Articulation across grade-bands: 3.LS2.C; 3.LS4.D; 5.ESS3.C; HS.LS2.C; HS.LS4.C; HS.LS4.D; HS.ESS2.C; HS.ESS2.D; HS.ESS2.E; HS.ESS3.C; HS.ESS3.D
Performance Expectation: Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.* [Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).]
Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth’s environments can have different impacts (negative and positive) for different living things. Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific principles to design an object, tool, process or system.
Crosscutting Concepts: Cause and Effect Relationships can be classified as causal or correlational, and correlation does not necessarily imply causation. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. WHST.6–8.8: Gather relevant information from multiple print and digital sources (primary and secondary), using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. Mathematics 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A; MS.LS2.C ; MS.LS4.D Articulation across grade-bands: 3.LS2.C; 3.LS4.D; 5.ESS3.C; HS.LS2.C; HS.LS4.C; HS.LS4.D; HS.ESS2.C; HS.ESS2.D; HS.ESS2.E; HS.ESS3.C; HS.ESS3.D
Showing 11 - 20 of 45 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881