Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 31 - 40 of 40 Standards

Standard Identifier: HS-PS1-4

Grade Range: 9–12
Disciplinary Core Idea: PS1.A: Structure and Properties of Matter, PS1.B: Chemical Reactions
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: HS-PS1 Matter and Its Interactions

Performance Expectation: Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy. [Clarification Statement: Emphasis is on the idea that a chemical reaction is a system that affects the energy change. Examples of models could include molecular-level drawings and diagrams of reactions, graphs showing the relative energies of reactants and products, and representations showing energy is conserved.] [Assessment Boundary: Assessment does not include calculating the total bond energy changes during a chemical reaction from the bond energies of reactants and products.]

Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter A stable molecule has less energy than the same set of atoms separated; one must provide at least this energy in order to take the molecule apart. PS1.B: Chemical Reactions Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of molecules that are matched by changes in kinetic energy.

Science & Engineering Practices: Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or between components of a system.

Crosscutting Concepts: Energy and Matter Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.A; HS.PS3.B; HS.PS3.D; HS.LS1.C Articulation across grade-bands: MS.PS1.A; MS.PS1.B; MS.PS2.B; MS.PS3.D; MS.LS1.C

Standard Identifier: HS-PS2-5

Grade Range: 9–12
Disciplinary Core Idea: PS2.B: Types of Interactions, PS3.A: Definitions of Energy
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Physical Science

Title: HS-PS2 Motion and Stability: Forces and Interactions

Performance Expectation: Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current. [Assessment Boundary: Assessment is limited to designing and conducting investigations with provided materials and tools.]

Disciplinary Core Idea(s):
PS2.B: Types of Interactions Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. PS3.A: Definitions of Energy “Electrical energy” may mean energy stored in a battery or energy transmitted by electric currents. (secondary to HS-PS2-5)

Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.

Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. WHST.11-12.8: Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. WHST.9-12.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.A; HS.PS4.B; HS.ESS2.A; HS.ESS3.A Articulation across grade-bands: MS.PS2.B; MS.ESS1.B

Standard Identifier: HS-PS2-6

Grade Range: 9–12
Disciplinary Core Idea: PS1.A: Structure and Properties of Matter, PS2.B: Types of Interactions
Cross Cutting Concept: CCC-6: Structure and Function
Science & Engineering Practice: SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area: Physical Science

Title: HS-PS2 Motion and Stability: Forces and Interactions

Performance Expectation: Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.* [Clarification Statement: Emphasis is on the attractive and repulsive forces that determine the functioning of the material. Examples could include why electrically conductive materials are often made of metal, flexible but durable materials are made up of long chained molecules, and pharmaceuticals are designed to interact with specific receptors.] [Assessment Boundary: Assessment is limited to provided molecular structures of specific designed materials.]

Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter The structure and interactions of matter at the bulk scale are determined by electrical forces within and between atoms. (secondary to HS-PS2-6) PS2.B: Types of Interactions Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects.

Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Communicate scientific and technical information (e.g., about the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically).

Crosscutting Concepts: Structure and Function Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and connections of components to reveal its function and/or solve a problem.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-10.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.PS1.A; MS.PS2.B

Standard Identifier: HS-PS3-1

Grade Range: 9–12
Disciplinary Core Idea: PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-5: Using Mathematics and Computational Thinking
Content Area: Physical Science

Title: HS-PS3 Energy

Performance Expectation: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. [Clarification Statement: Emphasis is on explaining the meaning of mathematical expressions used in the model.] [Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system’s total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. PS3.B: Conservation of Energy and Energy Transfer Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior. The availability of energy limits what can occur in any system.

Science & Engineering Practices: Using Mathematics and Computational Thinking Create a computational model or simulation of a phenomenon, designed device, process, or system.

Crosscutting Concepts: Systems and System Models Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes the universe is a vast single system in which basic laws are consistent.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.B; HS.LS2.B; HS.ESS1.A; HS.ESS2.A Articulation across grade-bands: MS.PS3.A; MS.PS3.B; MS.ESS2.A

Standard Identifier: HS-PS3-2

Grade Range: 9–12
Disciplinary Core Idea: PS3.A: Definitions of Energy
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: HS-PS3 Energy

Performance Expectation: Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motion of particles (objects) and energy associated with the relative position of particles (objects). [Clarification Statement: Examples of phenomena at the macroscopic scale could include the conversion of kinetic energy to thermal energy, the energy stored due to position of an object above the earth, and the energy stored between two electrically-charged plates. Examples of models could include diagrams, drawings, descriptions, and computer simulations.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system’s total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be modeled as a combination of energy associated with the motion of particles and energy associated with the configuration (relative position of the particles). In some cases the relative position energy can be thought of as stored in fields (which mediate interactions between particles).

Science & Engineering Practices: Developing and Using Models Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system.

Crosscutting Concepts: Energy and Matter Energy cannot be created or destroyed—only moves between one place and another place, between objects and/or fields, or between systems.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.B; HS.PS2.B; HS.ESS2.A Articulation across grade-bands: MS.PS1.A; MS.PS2.B; MS.PS3.A; MS.PS3.C

Standard Identifier: HS-PS3-3

Grade Range: 9–12
Disciplinary Core Idea: PS3.A: Definitions of Energy, PS3.D: Energy in Chemical Processes, ETS1.A: Defining and Delimiting Engineering Problems
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: HS-PS3 Energy

Performance Expectation: Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.* [Clarification Statement: Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and generators. Examples of constraints could include use of renewable energy forms and efficiency.] [Assessment Boundary: Assessment for quantitative evaluations is limited to total output for a given input. Assessment is limited to devices constructed with materials provided to students.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. PS3.D: Energy in Chemical Processes Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment. ETS1.A: Defining and Delimiting Engineering Problems Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary to HS-PS3-3)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Design, evaluate, and/or refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.

Crosscutting Concepts: Energy and Matter Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World Modern civilization depends on major technological systems. Engineers continuously modify these technological systems by applying scientific knowledge and Engineering, Technology, and Applications of Science practices to increase benefits while decreasing costs and risks.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS3.A Articulation across grade-bands: MS.PS3.A; MS.PS3.B; MS.ESS2.A

Standard Identifier: HS-PS4-1

Grade Range: 9–12
Disciplinary Core Idea: PS4.A: Wave Properties
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-5: Using Mathematics and Computational Thinking
Content Area: Physical Science

Title: HS-PS4 Waves and Their Applications in Technologies for Information Transfer

Performance Expectation: Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. [Clarification Statement: Examples of data could include electromagnetic radiation traveling in a vacuum and glass, sound waves traveling through air and water, and seismic waves traveling through the earth.] [Assessment Boundary: Assessment is limited to algebraic relationships and describing those relationships qualitatively.]

Disciplinary Core Idea(s):
PS4.A: Wave Properties The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing.

Science & Engineering Practices: Using Mathematics and Computational Thinking Use mathematical representations of phenomena or design solutions to describe and/or support claims and/or explanations.

Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.7: Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-SSE.3.a-c: Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. A.CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS2.A Articulation across grade-bands: MS.PS4.A; MS.PS4.B

Standard Identifier: HS-PS4-2

Grade Range: 9–12
Disciplinary Core Idea: PS4.A: Wave Properties
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-1: Asking Questions and Defining Problems
Content Area: Physical Science

Title: HS-PS4 Waves and Their Applications in Technologies for Information Transfer

Performance Expectation: Evaluate questions about the advantages of using digital transmission and storage of information. [Clarification Statement: Examples of advantages could include that digital information is stable because it can be stored reliably in computer memory, transferred easily, and copied and shared rapidly. Disadvantages could include issues of easy deletion, security, and theft.]

Disciplinary Core Idea(s):
PS4.A: Wave Properties Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses.

Science & Engineering Practices: Asking Questions and Defining Problems Evaluate questions that challenge the premise(s) of an argument, the interpretation of a data set, or the suitability of a design.

Crosscutting Concepts: Stability and Change Systems can be designed for greater or lesser stability. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Modern civilization depends on major technological systems. Engineers continuously modify these technological systems by applying scientific knowledge and Engineering, Technology, and Applications of Science practices to increase benefits while decreasing costs and risks.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.9-10.8: Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. RST.11-12.8: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.PS4.A; MS.PS4.B; MS.PS4.C

Standard Identifier: HS-PS4-3

Grade Range: 9–12
Disciplinary Core Idea: PS4.A: Wave Properties, PS4.B: Electromagnetic Radiation
Cross Cutting Concept: CCC-4: Systems and Systems Models
Science & Engineering Practice: SEP-7: Engaging in Argument From Science
Content Area: Physical Science

Title: HS-PS4 Waves and Their Applications in Technologies for Information Transfer

Performance Expectation: Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other. [Clarification Statement: Emphasis is on how the experimental evidence supports the claim and how a theory is generally modified in light of new evidence. Examples of a phenomenon could include resonance, interference, diffraction, and photoelectric effect.] [Assessment Boundary: Assessment does not include using quantum theory.]

Disciplinary Core Idea(s):
PS4.A: Wave Properties [From the 3–5 grade band endpoints] Waves can add or cancel one another as they cross, depending on their relative phase (i.e., relative position of peaks and troughs of the waves), but they emerge unaffected by each other. (Boundary: The discussion at this grade level is qualitative only; it can be based on the fact that two different sounds can pass a location in different directions without getting mixed up.) PS4.B: Electromagnetic Radiation Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of changing electric and magnetic fields or as particles called photons. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model explains other features.

Science & Engineering Practices: Engaging in Argument from Evidence Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence.

Crosscutting Concepts: Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.9-10.8: Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. RST.11-12.8: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. Mathematics MP.2: Reason abstractly and quantitatively. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-SSE.3.a-c: Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. A.CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.D; HS.ESS1.A; HS.ESS2.D Articulation across grade-bands: MS.PS4.B

Standard Identifier: HS-PS4-5

Grade Range: 9–12
Disciplinary Core Idea: PS3.D: Energy in Chemical Processes, PS4.A: Wave Properties, PS4.B: Electromagnetic Radiation, PS4.C: Information Technologies and Instrumentation
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area: Physical Science

Title: HS-PS4 Waves and Their Applications in Technologies for Information Transfer

Performance Expectation: Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.* [Clarification Statement: Examples could include solar cells capturing light and converting it to electricity; medical imaging; and communications technology.] [Assessment Boundary: Assessments are limited to qualitative information. Assessments do not include band theory.]

Disciplinary Core Idea(s):
PS3.D: Energy in Chemical Processes Solar cells are human-made devices that likewise capture the sun’s energy and produce electrical energy. (secondary to HS-PS4-5) PS4.A: Wave Properties Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses. PS4.B: Electromagnetic Radiation Photoelectric materials emit electrons when they absorb light of a high-enough frequency. PS4.C: Information Technologies and Instrumentation Multiple technologies based on the understanding of waves and their interactions with matter are part of everyday experiences in the modern world (e.g., medical imaging, communications, scanners) and in scientific research. They are essential tools for producing, transmitting, and capturing signals and for storing and interpreting the information contained in them.

Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Communicate technical information or ideas (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically).

Crosscutting Concepts: Cause and Effect Systems can be designed to cause a desired effect. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Science and engineering complement each other in the cycle known as research and development (R&D). Influence of Engineering, Technology, and Science on Society and the Natural World Modern civilization depends on major technological systems.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy WHST.9-10.2.a-f: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2.a-e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.A Articulation across grade-bands: MS.PS4.A; MS.PS4.B; MS.PS4.C

Showing 31 - 40 of 40 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881