Science (CA NGSS) Standards
Remove this criterion from the search
ESS2.E: Biogeology
Remove this criterion from the search
LS2.D: Social Interactions and Group Behavior
Remove this criterion from the search
LS4.A: Evidence of Common Ancestry and Diversity
Remove this criterion from the search
PS2.A: Forces and Motion
Remove this criterion from the search
PS3.D: Energy in Chemical Processes
Remove this criterion from the search
PS4.B: Electromagnetic Radiation
Results
Showing 21 - 30 of 34 Standards
Standard Identifier: HS-ESS1-1
Grade Range:
9–12
Disciplinary Core Idea:
ESS1.A: The Universe and its Stars, PS3.D: Energy in Chemical Processes
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Earth and Space Science
Title: HS-ESS1 Earth’s Place in the Universe
Performance Expectation: Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun’s core to release energy that eventually reaches Earth in the form of radiation. [Clarification Statement: Emphasis is on the energy transfer mechanisms that allow energy from nuclear fusion in the sun’s core to reach Earth. Examples of evidence for the model include observations of the masses and lifetimes of other stars, as well as the ways that the sun’s radiation varies due to sudden solar flares (“space weather”), the 11-year sunspot cycle, and non-cyclic variations over centuries.] [Assessment Boundary: Assessment does not include details of the atomic and sub-atomic processes involved with the sun’s nuclear fusion.]
Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The star called the sun is changing and will burn out over a lifespan of approximately 10 billion years. PS3.D: Energy in Chemical Processes Nuclear Fusion processes in the center of the sun release the energy that ultimately reaches Earth as radiation. (secondary to HS-ESS1-1)
Science & Engineering Practices: Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or between components of a system.
Crosscutting Concepts: Scale, Proportion, and Quantity The significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. HSN-Q.A.2: Define appropriate quantities for the purpose of descriptive modeling. HSN-Q.A.3: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.C; HS.PS3.A Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS1.A; MS.ESS2.A; MS.ESS2.D
Performance Expectation: Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun’s core to release energy that eventually reaches Earth in the form of radiation. [Clarification Statement: Emphasis is on the energy transfer mechanisms that allow energy from nuclear fusion in the sun’s core to reach Earth. Examples of evidence for the model include observations of the masses and lifetimes of other stars, as well as the ways that the sun’s radiation varies due to sudden solar flares (“space weather”), the 11-year sunspot cycle, and non-cyclic variations over centuries.] [Assessment Boundary: Assessment does not include details of the atomic and sub-atomic processes involved with the sun’s nuclear fusion.]
Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The star called the sun is changing and will burn out over a lifespan of approximately 10 billion years. PS3.D: Energy in Chemical Processes Nuclear Fusion processes in the center of the sun release the energy that ultimately reaches Earth as radiation. (secondary to HS-ESS1-1)
Science & Engineering Practices: Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or between components of a system.
Crosscutting Concepts: Scale, Proportion, and Quantity The significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. HSN-Q.A.2: Define appropriate quantities for the purpose of descriptive modeling. HSN-Q.A.3: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.C; HS.PS3.A Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS1.A; MS.ESS2.A; MS.ESS2.D
Standard Identifier: HS-ESS1-2
Grade Range:
9–12
Disciplinary Core Idea:
ESS1.A: The Universe and its Stars, PS4.B: Electromagnetic Radiation
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, cycles, and conservation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: HS-ESS1 Earth’s Place in the Universe
Performance Expectation: Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe. [Clarification Statement: Emphasis is on the astronomical evidence of the red shift of light from galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases (from the spectra of electromagnetic radiation from stars), which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).]
Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The study of stars’ light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth. The Big Bang theory is supported by observations of distant galaxies receding from our own, of the measured composition of stars and non-stellar gases, and of the maps of spectra of the primordial radiation (cosmic microwave background) that still fills the universe. Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the process releases electromagnetic energy. Heavier elements are produced when certain massive stars achieve a supernova stage and explode. PS4.B: Electromagnetic Radiation Atoms of each element emit and absorb characteristic frequencies of light. These characteristics allow identification of the presence of an element, even in microscopic quantities. (secondary to HS-ESS1-2)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence.
Crosscutting Concepts: Energy and Matter Energy cannot be created or destroyed–only moved between one place and another place, between objects and/or fields, or between systems. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future. Science assumes the universe is a vast single system in which basic laws are consistent.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-10.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.C; HS.PS3.A; HS.PS3.B; HS.PS4.A Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS1.A
Performance Expectation: Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe. [Clarification Statement: Emphasis is on the astronomical evidence of the red shift of light from galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases (from the spectra of electromagnetic radiation from stars), which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).]
Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The study of stars’ light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth. The Big Bang theory is supported by observations of distant galaxies receding from our own, of the measured composition of stars and non-stellar gases, and of the maps of spectra of the primordial radiation (cosmic microwave background) that still fills the universe. Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the process releases electromagnetic energy. Heavier elements are produced when certain massive stars achieve a supernova stage and explode. PS4.B: Electromagnetic Radiation Atoms of each element emit and absorb characteristic frequencies of light. These characteristics allow identification of the presence of an element, even in microscopic quantities. (secondary to HS-ESS1-2)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence.
Crosscutting Concepts: Energy and Matter Energy cannot be created or destroyed–only moved between one place and another place, between objects and/or fields, or between systems. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future. Science assumes the universe is a vast single system in which basic laws are consistent.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-10.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.C; HS.PS3.A; HS.PS3.B; HS.PS4.A Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS1.A
Standard Identifier: HS-ESS2-7
Grade Range:
9–12
Disciplinary Core Idea:
ESS2.D: Weather and Climate, ESS2.E: Biogeology
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Earth and Space Science
Title: HS-ESS2 Earth’s Systems
Performance Expectation: Construct an argument based on evidence about the simultaneous coevolution of Earth’s systems and life on Earth. [Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth’s other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth’s surface. Examples include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms.] [Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth’s other systems.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen. ESS2.E: Biogeology The many dynamic and delicate feedbacks between the biosphere and other Earth systems cause a continual co-evolution of Earth’s surface and the life that exists on it.
Science & Engineering Practices: Engaging in Argument from Evidence Construct an oral and written argument or counter-arguments based on data and evidence.
Crosscutting Concepts: Stability and Change Much of science deals with constructing explanations of how things change and how they remain stable.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.1.a-e: Write arguments focused on discipline-specific content.
DCI Connections:
Connections to other DCIs in this grade-band: HS.LS2.A; HS.LS2.C; HS.LS4.A; HS.LS4.B; HS.LS4.C; HS.LS4.D Articulation across grade-bands: MS.LS2.A; MS.LS2.C; MS.LS4.A; MS.LS4.B; MS.LS4.C; MS.ESS1.C; MS.ESS2.A; MS.ESS2.C; MS.ESS3.C
Performance Expectation: Construct an argument based on evidence about the simultaneous coevolution of Earth’s systems and life on Earth. [Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth’s other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth’s surface. Examples include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms.] [Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth’s other systems.]
Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen. ESS2.E: Biogeology The many dynamic and delicate feedbacks between the biosphere and other Earth systems cause a continual co-evolution of Earth’s surface and the life that exists on it.
Science & Engineering Practices: Engaging in Argument from Evidence Construct an oral and written argument or counter-arguments based on data and evidence.
Crosscutting Concepts: Stability and Change Much of science deals with constructing explanations of how things change and how they remain stable.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.1.a-e: Write arguments focused on discipline-specific content.
DCI Connections:
Connections to other DCIs in this grade-band: HS.LS2.A; HS.LS2.C; HS.LS4.A; HS.LS4.B; HS.LS4.C; HS.LS4.D Articulation across grade-bands: MS.LS2.A; MS.LS2.C; MS.LS4.A; MS.LS4.B; MS.LS4.C; MS.ESS1.C; MS.ESS2.A; MS.ESS2.C; MS.ESS3.C
Standard Identifier: HS-LS2-5
Grade Range:
9–12
Disciplinary Core Idea:
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems, PS3.D: Energy in Chemical Processes
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-2: Developing and Using Models
Content Area:
Life Science
Title: HS-LS2 Ecosystems: Interactions, Energy, and Dynamics
Performance Expectation: Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. [Clarification Statement: Examples of models could include simulations and mathematical models.] [Assessment Boundary: Assessment does not include the specific chemical steps of photosynthesis and respiration.]
Disciplinary Core Idea(s):
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged among the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes. PS3.D: Energy in Chemical Processes The main way that solar energy is captured and stored on Earth is through the complex chemical process known as photosynthesis. (secondary to HS-LS2-5)
Science & Engineering Practices: Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or components of a system.
Crosscutting Concepts: Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
N/A
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.B; HS.ESS2.D Articulation across grade-bands: MS.PS3.D; MS.LS1.C; MS.LS2.B; MS.ESS2.A
Performance Expectation: Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. [Clarification Statement: Examples of models could include simulations and mathematical models.] [Assessment Boundary: Assessment does not include the specific chemical steps of photosynthesis and respiration.]
Disciplinary Core Idea(s):
LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged among the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes. PS3.D: Energy in Chemical Processes The main way that solar energy is captured and stored on Earth is through the complex chemical process known as photosynthesis. (secondary to HS-LS2-5)
Science & Engineering Practices: Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or components of a system.
Crosscutting Concepts: Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
N/A
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.B; HS.ESS2.D Articulation across grade-bands: MS.PS3.D; MS.LS1.C; MS.LS2.B; MS.ESS2.A
Standard Identifier: HS-LS2-8
Grade Range:
9–12
Disciplinary Core Idea:
LS2.D: Social Interactions and Group Behavior
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: HS-LS2 Ecosystems: Interactions, Energy, and Dynamics
Performance Expectation: Evaluate evidence for the role of group behavior on individual and species’ chances to survive and reproduce. [Clarification Statement: Emphasis is on: (1) distinguishing between group and individual behavior, (2) identifying evidence supporting the outcomes of group behavior, and (3) developing logical and reasonable arguments based on evidence. Examples of group behaviors could include flocking, schooling, herding, and cooperative behaviors such as hunting, migrating, and swarming.]
Disciplinary Core Idea(s):
LS2.D: Social Interactions and Group Behavior Group behavior has evolved because membership can increase the chances of survival for individuals and their genetic relatives.
Science & Engineering Practices: Engaging in Argument from Evidence Evaluate the evidence behind currently accepted explanations to determine the merits of arguments. Connections to Nature of Science: Scientific Knowledge is Open to Revision in Light of New Evidence Scientific argumentation is a mode of logical discourse used to clarify the strength of relationships between ideas and evidence that may result in revision of an explanation.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.7: Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. RST.9-10.8: Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. RST.11-12.8.a–e: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS1.B
Performance Expectation: Evaluate evidence for the role of group behavior on individual and species’ chances to survive and reproduce. [Clarification Statement: Emphasis is on: (1) distinguishing between group and individual behavior, (2) identifying evidence supporting the outcomes of group behavior, and (3) developing logical and reasonable arguments based on evidence. Examples of group behaviors could include flocking, schooling, herding, and cooperative behaviors such as hunting, migrating, and swarming.]
Disciplinary Core Idea(s):
LS2.D: Social Interactions and Group Behavior Group behavior has evolved because membership can increase the chances of survival for individuals and their genetic relatives.
Science & Engineering Practices: Engaging in Argument from Evidence Evaluate the evidence behind currently accepted explanations to determine the merits of arguments. Connections to Nature of Science: Scientific Knowledge is Open to Revision in Light of New Evidence Scientific argumentation is a mode of logical discourse used to clarify the strength of relationships between ideas and evidence that may result in revision of an explanation.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.7: Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. RST.9-10.8: Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. RST.11-12.8.a–e: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS1.B
Standard Identifier: HS-LS4-1
Grade Range:
9–12
Disciplinary Core Idea:
LS4.A: Evidence of Common Ancestry and Diversity
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area:
Life Science
Title: HS-LS4 HS-LS4 Biological Evolution: Unity and Diversity
Performance Expectation: Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence. [Clarification Statement: Emphasis is on a conceptual understanding of the role each line of evidence has relating to common ancestry and biological evolution. Examples of evidence could include similarities in DNA sequences, anatomical structures, and order of appearance of structures in embryological development.]
Disciplinary Core Idea(s):
LS4.A: Evidence of Common Ancestry and Diversity Genetic information provides evidence of evolution. DNA sequences vary among species, but there are many overlaps; in fact, the ongoing branching that produces multiple lines of descent can be inferred by comparing the DNA sequences of different organisms. Such information is also derivable from the similarities and differences in amino acid sequences and from anatomical and embryological evidence.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Communicate scientific information (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence.
Crosscutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-10.2.a-f: Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. WHST.11-12.2.a-e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. WHST.9-12.9: Draw evidence from informational texts to support analysis, reflection, and research. SL.11-12.4: Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to other DCIs in this grade-band: HS.LS3.A; HS.LS3.B; HS.ESS1.C Articulation across grade-bands: LS3.A; LS3.B; MS.LS4.A; MS.ESS1.C
Performance Expectation: Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence. [Clarification Statement: Emphasis is on a conceptual understanding of the role each line of evidence has relating to common ancestry and biological evolution. Examples of evidence could include similarities in DNA sequences, anatomical structures, and order of appearance of structures in embryological development.]
Disciplinary Core Idea(s):
LS4.A: Evidence of Common Ancestry and Diversity Genetic information provides evidence of evolution. DNA sequences vary among species, but there are many overlaps; in fact, the ongoing branching that produces multiple lines of descent can be inferred by comparing the DNA sequences of different organisms. Such information is also derivable from the similarities and differences in amino acid sequences and from anatomical and embryological evidence.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Communicate scientific information (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence.
Crosscutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-10.2.a-f: Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. WHST.11-12.2.a-e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. WHST.9-12.9: Draw evidence from informational texts to support analysis, reflection, and research. SL.11-12.4: Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to other DCIs in this grade-band: HS.LS3.A; HS.LS3.B; HS.ESS1.C Articulation across grade-bands: LS3.A; LS3.B; MS.LS4.A; MS.ESS1.C
Standard Identifier: HS-PS2-1
Grade Range:
9–12
Disciplinary Core Idea:
PS2.A: Forces and Motion
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Physical Science
Title: HS-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Analyze data to support the claim that Newton’s second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. [Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object sliding down a ramp, or a moving object being pulled by a constant force.] [Assessment Boundary: Assessment is limited to one-dimensional motion and to macroscopic objects moving at non-relativistic speeds.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion Newton’s second law accurately predicts changes in the motion of macroscopic objects.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Theories and laws provide explanations in science. Laws are statements or descriptions of the relationships among observable phenomena.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.7: Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. WHST.9-12.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-SSE.3.a-c: Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. A-CED.1: Create equations and inequalities in one variable and use them to solve problems. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. F-IF.7.a-e: Graph functions expressed symbolically and show key features of the graph, by in hand in simple cases and using technology for more complicated cases. S-ID.1: Represent data with plots on the real number line (dot plots, histograms, and box plots).
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.C; HS.ESS1.A; HS.ESS1.C; HS.ESS2.C Articulation across grade-bands: MS.PS2.A; MS.PS3.C
Performance Expectation: Analyze data to support the claim that Newton’s second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. [Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object sliding down a ramp, or a moving object being pulled by a constant force.] [Assessment Boundary: Assessment is limited to one-dimensional motion and to macroscopic objects moving at non-relativistic speeds.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion Newton’s second law accurately predicts changes in the motion of macroscopic objects.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Theories and laws provide explanations in science. Laws are statements or descriptions of the relationships among observable phenomena.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.7: Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. WHST.9-12.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-SSE.3.a-c: Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. A-CED.1: Create equations and inequalities in one variable and use them to solve problems. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. F-IF.7.a-e: Graph functions expressed symbolically and show key features of the graph, by in hand in simple cases and using technology for more complicated cases. S-ID.1: Represent data with plots on the real number line (dot plots, histograms, and box plots).
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.C; HS.ESS1.A; HS.ESS1.C; HS.ESS2.C Articulation across grade-bands: MS.PS2.A; MS.PS3.C
Standard Identifier: HS-PS2-2
Grade Range:
9–12
Disciplinary Core Idea:
PS2.A: Forces and Motion
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-5: Using Mathematics and Computational Thinking
Content Area:
Physical Science
Title: HS-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. [Clarification Statement: Emphasis is on the quantitative conservation of momentum in interactions and the qualitative meaning of this principle.] [Assessment Boundary: Assessment is limited to systems of two macroscopic bodies moving in one dimension.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system.
Science & Engineering Practices: Using Mathematics and Computational Thinking Use mathematical representations of phenomena to describe explanations.
Crosscutting Concepts: Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems. A-CED.1: Create equations and inequalities in one variable and use them to solve problems. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS1.A; HS.ESS1.C Articulation across grade-bands: MS.PS2.A; MS.PS3.C
Performance Expectation: Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. [Clarification Statement: Emphasis is on the quantitative conservation of momentum in interactions and the qualitative meaning of this principle.] [Assessment Boundary: Assessment is limited to systems of two macroscopic bodies moving in one dimension.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system.
Science & Engineering Practices: Using Mathematics and Computational Thinking Use mathematical representations of phenomena to describe explanations.
Crosscutting Concepts: Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems. A-CED.1: Create equations and inequalities in one variable and use them to solve problems. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS1.A; HS.ESS1.C Articulation across grade-bands: MS.PS2.A; MS.PS3.C
Standard Identifier: HS-PS2-3
Grade Range:
9–12
Disciplinary Core Idea:
PS2.A: Forces and Motion, ETS1.A: Defining and Delimiting Engineering Problems, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Physical Science
Title: HS-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Apply science and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.* [Clarification Statement: Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and modifying the design to improve it. Examples of a device could include a football helmet or a parachute.] [Assessment Boundary: Assessment is limited to qualitative evaluations and/or algebraic manipulations.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system. ETS1.A: Defining and Delimiting Engineering Problems Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary to HS-PS2-3) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (secondary to HS-PS2-3)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects.
Crosscutting Concepts: Cause and Effect Systems can be designed to cause a desired effect.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.PS2.A; MS.PS3.C
Performance Expectation: Apply science and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.* [Clarification Statement: Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and modifying the design to improve it. Examples of a device could include a football helmet or a parachute.] [Assessment Boundary: Assessment is limited to qualitative evaluations and/or algebraic manipulations.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system. ETS1.A: Defining and Delimiting Engineering Problems Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary to HS-PS2-3) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (secondary to HS-PS2-3)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects.
Crosscutting Concepts: Cause and Effect Systems can be designed to cause a desired effect.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.PS2.A; MS.PS3.C
Standard Identifier: HS-PS3-3
Grade Range:
9–12
Disciplinary Core Idea:
PS3.A: Definitions of Energy, PS3.D: Energy in Chemical Processes, ETS1.A: Defining and Delimiting Engineering Problems
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Physical Science
Title: HS-PS3 Energy
Performance Expectation: Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.* [Clarification Statement: Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and generators. Examples of constraints could include use of renewable energy forms and efficiency.] [Assessment Boundary: Assessment for quantitative evaluations is limited to total output for a given input. Assessment is limited to devices constructed with materials provided to students.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. PS3.D: Energy in Chemical Processes Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment. ETS1.A: Defining and Delimiting Engineering Problems Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary to HS-PS3-3)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Design, evaluate, and/or refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.
Crosscutting Concepts: Energy and Matter Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World Modern civilization depends on major technological systems. Engineers continuously modify these technological systems by applying scientific knowledge and Engineering, Technology, and Applications of Science practices to increase benefits while decreasing costs and risks.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS3.A Articulation across grade-bands: MS.PS3.A; MS.PS3.B; MS.ESS2.A
Performance Expectation: Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.* [Clarification Statement: Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and generators. Examples of constraints could include use of renewable energy forms and efficiency.] [Assessment Boundary: Assessment for quantitative evaluations is limited to total output for a given input. Assessment is limited to devices constructed with materials provided to students.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. PS3.D: Energy in Chemical Processes Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment. ETS1.A: Defining and Delimiting Engineering Problems Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary to HS-PS3-3)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Design, evaluate, and/or refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.
Crosscutting Concepts: Energy and Matter Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World Modern civilization depends on major technological systems. Engineers continuously modify these technological systems by applying scientific knowledge and Engineering, Technology, and Applications of Science practices to increase benefits while decreasing costs and risks.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS3.A Articulation across grade-bands: MS.PS3.A; MS.PS3.B; MS.ESS2.A
Showing 21 - 30 of 34 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881