Science (CA NGSS) Standards
Remove this criterion from the search
ESS1.A: The Universe and its Stars
Remove this criterion from the search
ESS1.C: The History of Planet Earth
Remove this criterion from the search
ESS2.C: The Roles of Water in Earth's Surface Processes
Remove this criterion from the search
ESS3.A: Natural Resources
Remove this criterion from the search
ESS3.B: Natural Hazards
Remove this criterion from the search
ESS3.D: Global Climate Change
Remove this criterion from the search
ETS1.A: Defining and Delimiting Engineering Problems
Remove this criterion from the search
ETS1.C: Optimizing the Design Solution
Remove this criterion from the search
LS1.A: Structure and Function
Remove this criterion from the search
LS1.B: Growth and Development of Organisms
Remove this criterion from the search
LS1.C: Organization for Matter and Energy Flow in Organisms
Remove this criterion from the search
LS1.D: Information Processing
Remove this criterion from the search
LS3.B: Variation of Traits
Remove this criterion from the search
PS1.A: Structure and Properties of Matter
Remove this criterion from the search
PS2.A: Forces and Motion
Remove this criterion from the search
PS3.B: Conservation of Energy and Energy Transfer
Remove this criterion from the search
PS4.A: Wave Properties
Remove this criterion from the search
PS4.C: Information Technologies and Instrumentation
Remove this criterion from the search
Add a Science & Engineering Practice
Remove this criterion from the search
SEP-1: Asking Questions and Defining Problems
Remove this criterion from the search
SEP-4: Analyzing and Interpreting Data
Remove this criterion from the search
SEP-7: Engaging in Argument From Science
Results
Showing 1 - 9 of 9 Standards
Standard Identifier: K-LS1-1
Grade:
K
Disciplinary Core Idea:
LS1.C: Organization for Matter and Energy Flow in Organisms
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Life Science
Title: K-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Use observations to describe patterns of what plants and animals (including humans) need to survive. [Clarification Statement: Examples of patterns could include that animals need to take in food but plants do not; the different kinds of food needed by different types of animals; the requirement of plants to have light; and, that all living things need water.]
Disciplinary Core Idea(s):
LS1.C: Organization for Matter and Energy Flow in Organisms All animals need food in order to live and grow. They obtain their food from plants or from other animals. Plants need water and light to live and grow.
Science & Engineering Practices: Analyzing and Interpreting Data Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. Connections to Nature of Science:: Scientific Knowledge is Based on Empirical Evidence Scientists look for patterns and order when making observations about the world.
Crosscutting Concepts: Patterns Patterns in the natural and human designed world can be observed and used as evidence.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.K.7: Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). Mathematics K.MD.2: Directly compare two objects with a measurable attribute in common, to see which object has “more of”/”less of” the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/ shorter.
DCI Connections:
Connections to other DCIs in kindergarten: N/A Articulation across grade-levels: 1.LS1.A; 2.LS2.A; 3.LS2.C; 3.LS4.B; 5.LS1.C; 5.LS2.A
Performance Expectation: Use observations to describe patterns of what plants and animals (including humans) need to survive. [Clarification Statement: Examples of patterns could include that animals need to take in food but plants do not; the different kinds of food needed by different types of animals; the requirement of plants to have light; and, that all living things need water.]
Disciplinary Core Idea(s):
LS1.C: Organization for Matter and Energy Flow in Organisms All animals need food in order to live and grow. They obtain their food from plants or from other animals. Plants need water and light to live and grow.
Science & Engineering Practices: Analyzing and Interpreting Data Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. Connections to Nature of Science:: Scientific Knowledge is Based on Empirical Evidence Scientists look for patterns and order when making observations about the world.
Crosscutting Concepts: Patterns Patterns in the natural and human designed world can be observed and used as evidence.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.K.7: Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). Mathematics K.MD.2: Directly compare two objects with a measurable attribute in common, to see which object has “more of”/”less of” the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/ shorter.
DCI Connections:
Connections to other DCIs in kindergarten: N/A Articulation across grade-levels: 1.LS1.A; 2.LS2.A; 3.LS2.C; 3.LS4.B; 5.LS1.C; 5.LS2.A
Standard Identifier: 3-LS3-1
Grade:
3
Disciplinary Core Idea:
LS3.A: Inheritance of Traits, LS3.B: Variation of Traits
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Life Science
Title: 3-LS3 Heredity: Inheritance and Variation of Traits
Performance Expectation: Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms. [Clarification Statement: Patterns are the similarities and differences in traits shared between offspring and their parents, or among siblings. Emphasis is on organisms other than humans.] [Assessment Boundary: Assessment does not include genetic mechanisms of inheritance and prediction of traits. Assessment is limited to non-human examples.]
Disciplinary Core Idea(s):
LS3.A: Inheritance of Traits Many characteristics of organisms are inherited from their parents. LS3.B: Variation of Traits Different organisms vary in how they look and function because they have different inherited information.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to make sense of phenomena using logical reasoning.
Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify natural phenomena.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.2.a–d: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. SL.3.4: Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. a. Plan and deliver an informative/explanatory presentation on a topic that: organizes ideas around major points of information, follows a logical sequence, includes supporting details, uses clear and specific vocabulary, and provides a strong conclusion. Mathematics MP.4: Model with mathematics. MP.2: Reason abstractly and quantitatively. 3.MD.4: Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: 1.LS3.A; 1.LS3.B; MS.LS3.A; MS.LS3.B
Performance Expectation: Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms. [Clarification Statement: Patterns are the similarities and differences in traits shared between offspring and their parents, or among siblings. Emphasis is on organisms other than humans.] [Assessment Boundary: Assessment does not include genetic mechanisms of inheritance and prediction of traits. Assessment is limited to non-human examples.]
Disciplinary Core Idea(s):
LS3.A: Inheritance of Traits Many characteristics of organisms are inherited from their parents. LS3.B: Variation of Traits Different organisms vary in how they look and function because they have different inherited information.
Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to make sense of phenomena using logical reasoning.
Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify natural phenomena.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.2.a–d: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. SL.3.4: Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. a. Plan and deliver an informative/explanatory presentation on a topic that: organizes ideas around major points of information, follows a logical sequence, includes supporting details, uses clear and specific vocabulary, and provides a strong conclusion. Mathematics MP.4: Model with mathematics. MP.2: Reason abstractly and quantitatively. 3.MD.4: Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: 1.LS3.A; 1.LS3.B; MS.LS3.A; MS.LS3.B
Standard Identifier: 4-LS1-1
Grade:
4
Disciplinary Core Idea:
LS1.A: Structure and Function
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: 4-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. [Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin.] [Assessment Boundary: Assessment is limited to macroscopic structures within plant and animal systems.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction.
Science & Engineering Practices: Engaging in Argument from Evidence Construct an argument with evidence, data, and/or a model.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.4.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics 4.G.3: Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 1.LS1.A; 3.LS3.B; MS.LS1.A
Performance Expectation: Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. [Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin.] [Assessment Boundary: Assessment is limited to macroscopic structures within plant and animal systems.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction.
Science & Engineering Practices: Engaging in Argument from Evidence Construct an argument with evidence, data, and/or a model.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.4.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics 4.G.3: Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 1.LS1.A; 3.LS3.B; MS.LS1.A
Standard Identifier: 5-LS1-1
Grade:
5
Disciplinary Core Idea:
LS1.C: Organization for Matter and Energy Flow in Organisms
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: 5-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Support an argument that plants get the materials they need for growth chiefly from air and water. [Clarification Statement: Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil.]
Disciplinary Core Idea(s):
LS1.C: Organization for Matter and Energy Flow in Organisms Plants acquire their material for growth chiefly from air and water.
Science & Engineering Practices: Engaging in Argument from Evidence Support an argument with evidence, data, or a model.
Crosscutting Concepts: Energy and Matter Matter is transported into, out of, and within systems.
California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RI.5.1: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. W.5.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 5.MD.1: Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.
DCI Connections:
Connections to other DCIs in fifth grade: 5.PS1.A Articulation across grade-levels: K.LS1.C; 2.LS2.A; MS.LS1.C
Performance Expectation: Support an argument that plants get the materials they need for growth chiefly from air and water. [Clarification Statement: Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil.]
Disciplinary Core Idea(s):
LS1.C: Organization for Matter and Energy Flow in Organisms Plants acquire their material for growth chiefly from air and water.
Science & Engineering Practices: Engaging in Argument from Evidence Support an argument with evidence, data, or a model.
Crosscutting Concepts: Energy and Matter Matter is transported into, out of, and within systems.
California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RI.5.1: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. W.5.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 5.MD.1: Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.
DCI Connections:
Connections to other DCIs in fifth grade: 5.PS1.A Articulation across grade-levels: K.LS1.C; 2.LS2.A; MS.LS1.C
Standard Identifier: MS-LS1-3
Grade Range:
6–8
Disciplinary Core Idea:
LS1.A: Structure and Function
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: MS-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. [Clarification Statement: Emphasis is on the conceptual understanding that cells form tissues and tissues form organs specialized for particular body functions. Examples could include the interaction of subsystems within a system and the normal functioning of those systems.] [Assessment Boundary: Assessment does not include the mechanism of one body system independent of others. Assessment is limited to the circulatory, excretory, digestive, respiratory, muscular, and nervous systems.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions.
Science & Engineering Practices: Engaging in Argument from Evidence Use an oral and written argument supported by evidence to support or refute an explanation or a model for a phenomenon.
Crosscutting Concepts: Systems and System Models Systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. Connections to Nature of Science: Science is a Human Endeavor Scientists and engineers are guided by habits of mind such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RI.6.8: Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.LS1.A
Performance Expectation: Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. [Clarification Statement: Emphasis is on the conceptual understanding that cells form tissues and tissues form organs specialized for particular body functions. Examples could include the interaction of subsystems within a system and the normal functioning of those systems.] [Assessment Boundary: Assessment does not include the mechanism of one body system independent of others. Assessment is limited to the circulatory, excretory, digestive, respiratory, muscular, and nervous systems.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions.
Science & Engineering Practices: Engaging in Argument from Evidence Use an oral and written argument supported by evidence to support or refute an explanation or a model for a phenomenon.
Crosscutting Concepts: Systems and System Models Systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. Connections to Nature of Science: Science is a Human Endeavor Scientists and engineers are guided by habits of mind such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RI.6.8: Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.LS1.A
Standard Identifier: MS-LS1-4
Grade Range:
6–8
Disciplinary Core Idea:
LS1.B: Growth and Development of Organisms
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: MS-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. [Clarification Statement: Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds, and creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.]
Disciplinary Core Idea(s):
LS1.B: Growth and Development of Organisms Animals engage in characteristic behaviors that increase the odds of reproduction. Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction.
Science & Engineering Practices: Engaging in Argument from Evidence Use an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.
Crosscutting Concepts: Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RI.6.8: Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A Articulation across grade-bands: 3.LS1.B; HS.LS2.A; HS.LS2.D
Performance Expectation: Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. [Clarification Statement: Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds, and creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.]
Disciplinary Core Idea(s):
LS1.B: Growth and Development of Organisms Animals engage in characteristic behaviors that increase the odds of reproduction. Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction.
Science & Engineering Practices: Engaging in Argument from Evidence Use an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.
Crosscutting Concepts: Cause and Effect Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RI.6.8: Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content.
DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A Articulation across grade-bands: 3.LS1.B; HS.LS2.A; HS.LS2.D
Standard Identifier: HS-LS3-1
Grade Range:
9–12
Disciplinary Core Idea:
LS1.A: Structure and Function, LS3.A: Inheritance of Traits
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-1: Asking Questions and Defining Problems
Content Area:
Life Science
Title: HS-LS3 Heredity: Inheritance and Variation of Traits
Performance Expectation: Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring. [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins. (secondary to HS-LS3-1) (Note: This Disciplinary Core Idea is also addressed by HS-LS1-1.) LS3.A: Inheritance of Traits Each chromosome consists of a single very long DNA molecule, and each gene on the chromosome is a particular segment of that DNA. The instructions for forming species’ characteristics are carried in DNA. All cells in an organism have the same genetic content, but the genes used (expressed) by the cell may be regulated in different ways. Not all DNA codes for a protein; some segments of DNA are involved in regulatory or structural functions, and some have no as-yet known function.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that arise from examining models or a theory to clarify relationships.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.9: Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS3.A; MS.LS3.B
Performance Expectation: Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring. [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins. (secondary to HS-LS3-1) (Note: This Disciplinary Core Idea is also addressed by HS-LS1-1.) LS3.A: Inheritance of Traits Each chromosome consists of a single very long DNA molecule, and each gene on the chromosome is a particular segment of that DNA. The instructions for forming species’ characteristics are carried in DNA. All cells in an organism have the same genetic content, but the genes used (expressed) by the cell may be regulated in different ways. Not all DNA codes for a protein; some segments of DNA are involved in regulatory or structural functions, and some have no as-yet known function.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that arise from examining models or a theory to clarify relationships.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.9: Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS3.A; MS.LS3.B
Standard Identifier: HS-LS3-2
Grade Range:
9–12
Disciplinary Core Idea:
LS3.B: Variation of Traits
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: HS-LS3 Heredity: Inheritance and Variation of Traits
Performance Expectation: Make and defend a claim based on evidence that inheritable genetic variations may result from (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors. [Clarification Statement: Emphasis is on using data to support arguments for the way variation occurs.] [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]
Disciplinary Core Idea(s):
LS3.B: Variation of Traits In sexual reproduction, chromosomes can sometimes swap sections during the process of meiosis (cell division), thereby creating new genetic combinations and thus more genetic variation. Although DNA replication is tightly regulated and remarkably accurate, errors do occur and result in mutations, which are also a source of genetic variation. Environmental factors can also cause mutations in genes, and viable mutations are inherited. Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors.
Science & Engineering Practices: Engaging in Argument from Evidence Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9–12.1.a–e: Write arguments focused on discipline-specific content. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS3.A; MS.LS3.B
Performance Expectation: Make and defend a claim based on evidence that inheritable genetic variations may result from (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors. [Clarification Statement: Emphasis is on using data to support arguments for the way variation occurs.] [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]
Disciplinary Core Idea(s):
LS3.B: Variation of Traits In sexual reproduction, chromosomes can sometimes swap sections during the process of meiosis (cell division), thereby creating new genetic combinations and thus more genetic variation. Although DNA replication is tightly regulated and remarkably accurate, errors do occur and result in mutations, which are also a source of genetic variation. Environmental factors can also cause mutations in genes, and viable mutations are inherited. Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors.
Science & Engineering Practices: Engaging in Argument from Evidence Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9–12.1.a–e: Write arguments focused on discipline-specific content. Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS3.A; MS.LS3.B
Standard Identifier: HS-LS3-3
Grade Range:
9–12
Disciplinary Core Idea:
LS3.B: Variation of Traits
Cross Cutting Concept:
CCC-3: Scale, Proportion, and Quantity
Science & Engineering Practice:
SEP-4: Analyzing and Interpreting Data
Content Area:
Life Science
Title: HS-LS3 Heredity: Inheritance and Variation of Traits
Performance Expectation: Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population. [Clarification Statement: Emphasis is on the use of mathematics to describe the probability of traits as it relates to genetic and environmental factors in the expression of traits.] [Assessment Boundary: Assessment does not include Hardy-Weinberg calculations.]
Disciplinary Core Idea(s):
LS3.B: Variation of Traits Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors.
Science & Engineering Practices: Analyzing and Interpreting Data Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible.
Crosscutting Concepts: Scale, Proportion, and Quantity Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). Connections to Nature of Science: Science is a Human Endeavor Technological advances have influenced the progress of science and science has influenced advances in technology. Science and engineering are influenced by society and society is influenced by science and engineering.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to other DCIs in this grade-band: HS.LS2.A; HS.LS2.C; HS.LS4.B; HS.LS4.C Articulation across grade-bands: MS.LS2.A; MS.LS3.B; MS.LS4.C
Performance Expectation: Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population. [Clarification Statement: Emphasis is on the use of mathematics to describe the probability of traits as it relates to genetic and environmental factors in the expression of traits.] [Assessment Boundary: Assessment does not include Hardy-Weinberg calculations.]
Disciplinary Core Idea(s):
LS3.B: Variation of Traits Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors.
Science & Engineering Practices: Analyzing and Interpreting Data Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible.
Crosscutting Concepts: Scale, Proportion, and Quantity Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). Connections to Nature of Science: Science is a Human Endeavor Technological advances have influenced the progress of science and science has influenced advances in technology. Science and engineering are influenced by society and society is influenced by science and engineering.
California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively.
DCI Connections:
Connections to other DCIs in this grade-band: HS.LS2.A; HS.LS2.C; HS.LS4.B; HS.LS4.C Articulation across grade-bands: MS.LS2.A; MS.LS3.B; MS.LS4.C
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881