Science (CA NGSS) Standards
        
            
                
                Remove this criterion from the search
                ESS3.A: Natural Resources
            
        
        
            
                
                Remove this criterion from the search
                LS1.A: Structure and Function
            
        
        
            
                
                Remove this criterion from the search
                PS3.A: Definitions of Energy
            
        
        
            
                
                Remove this criterion from the search
                PS3.D: Energy in Chemical Processes
            
        
        
            
                
                Remove this criterion from the search
                PS4.C: Information Technologies and Instrumentation
            
        
            
        Results
        Showing 1 - 10 of 37 Standards
    
        Standard Identifier: K-ESS3-1
                    Grade:
                    
                        K
                    
                
            
                        Disciplinary Core Idea:
                        
                            ESS3.A: Natural Resources
                        
                    
                
                        Cross Cutting Concept:
                        
                            CCC-4: Systems and Systems Models
                        
                    
            
                        Science & Engineering Practice:
                        
                            SEP-2: Developing and Using Models
                        
                    
                
                        Content Area:
                        
                            Earth and Space Science
                        
                    
            Title: K-ESS3 Earth and Human Activity
Performance Expectation: Use a model to represent the relationship between the needs of different plants or animals (including humans) and the places they live. [Clarification Statement: Examples of relationships could include that deer eat buds and leaves, therefore, they usually live in forested areas; and, grasses need sunlight so they often grow in meadows. Plants, animals, and their surroundings make up a system.]
Disciplinary Core Idea(s):
ESS3.A: Natural Resources Living things need water, air, and resources from the land, and they live in places that have the things they need. Humans use natural resources for everything they do.
Science & Engineering Practices: Developing and Using Models Use a model to represent relationships in the natural world.
Crosscutting Concepts: Systems and System Models Systems in the natural and designed world have parts that work together.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy SL.K.5: Add drawings or other visual displays to descriptions as desired to provide additional detail. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. K.CC.1-3: Know number names and the count sequence. K.CC.4-5: Count to tell the number of objects. K.CC.6-7 :Compare numbers.
DCI Connections:
Connections to other DCIs in kindergarten: N/A Articulation across grade-levels: 1.LS1.A; 5.LS2.A; 5.ESS2.A
                Performance Expectation: Use a model to represent the relationship between the needs of different plants or animals (including humans) and the places they live. [Clarification Statement: Examples of relationships could include that deer eat buds and leaves, therefore, they usually live in forested areas; and, grasses need sunlight so they often grow in meadows. Plants, animals, and their surroundings make up a system.]
Disciplinary Core Idea(s):
ESS3.A: Natural Resources Living things need water, air, and resources from the land, and they live in places that have the things they need. Humans use natural resources for everything they do.
Science & Engineering Practices: Developing and Using Models Use a model to represent relationships in the natural world.
Crosscutting Concepts: Systems and System Models Systems in the natural and designed world have parts that work together.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy SL.K.5: Add drawings or other visual displays to descriptions as desired to provide additional detail. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. K.CC.1-3: Know number names and the count sequence. K.CC.4-5: Count to tell the number of objects. K.CC.6-7 :Compare numbers.
DCI Connections:
Connections to other DCIs in kindergarten: N/A Articulation across grade-levels: 1.LS1.A; 5.LS2.A; 5.ESS2.A
Standard Identifier: 1-LS1-1
                    Grade:
                    
                        1
                    
                
            
                        Disciplinary Core Idea:
                        
                            LS1.A: Structure and Function, LS1.D: Information Processing
                        
                    
                
                        Cross Cutting Concept:
                        
                            CCC-6: Structure and Function
                        
                    
            
                        Science & Engineering Practice:
                        
                            SEP-6: Constructing Explanations and Designing Solutions
                        
                    
                
                        Content Area:
                        
                            Life Science
                        
                    
            Title: 1-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.* [Clarification Statement: Examples of human problems that can be solved by mimicking plant or animal solutions could include designing clothing or equipment to protect bicyclists by mimicking turtle shells, acorn shells, and animal scales; stabilizing structures by mimicking animal tails and roots on plants; keeping out intruders by mimicking thorns on branches and animal quills; and, detecting intruders by mimicking eyes and ears.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow. LS1.D: Information Processing Animals have body parts that capture and convey different kinds of information needed for growth and survival. Animals respond to these inputs with behaviors that help them survive. Plants also respond to some external inputs.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Use materials to design a device that solves a specific problem or a solution to a specific problem.
Crosscutting Concepts: Structure and Function The shape and stability of structures of natural and designed objects are related to their function(s). Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Every human-made product is designed by applying some knowledge of the natural world and is built using materials derived from the natural world.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.1.7: Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions).
DCI Connections:
Connections to other DCIs in first grade: N/A Articulation across grade-levels: K.ETS1.A; 4.LS1.A; 4.LS1.D; 4.ETS1.A
                Performance Expectation: Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.* [Clarification Statement: Examples of human problems that can be solved by mimicking plant or animal solutions could include designing clothing or equipment to protect bicyclists by mimicking turtle shells, acorn shells, and animal scales; stabilizing structures by mimicking animal tails and roots on plants; keeping out intruders by mimicking thorns on branches and animal quills; and, detecting intruders by mimicking eyes and ears.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow. LS1.D: Information Processing Animals have body parts that capture and convey different kinds of information needed for growth and survival. Animals respond to these inputs with behaviors that help them survive. Plants also respond to some external inputs.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Use materials to design a device that solves a specific problem or a solution to a specific problem.
Crosscutting Concepts: Structure and Function The shape and stability of structures of natural and designed objects are related to their function(s). Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Every human-made product is designed by applying some knowledge of the natural world and is built using materials derived from the natural world.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.1.7: Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions).
DCI Connections:
Connections to other DCIs in first grade: N/A Articulation across grade-levels: K.ETS1.A; 4.LS1.A; 4.LS1.D; 4.ETS1.A
Standard Identifier: 1-PS4-4
                    Grade:
                    
                        1
                    
                
            
                        Disciplinary Core Idea:
                        
                            PS4.C: Information Technologies and Instrumentation
                        
                    
                
                        Science & Engineering Practice:
                        
                            SEP-6: Constructing Explanations and Designing Solutions
                        
                    
                
                        Content Area:
                        
                            Physical Science
                        
                    
            Title: 1-PS4 Waves and their Applications in Technologies for Information Transfer
Performance Expectation: Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.* [Clarification Statement: Examples of devices could include a light source to send signals, paper cup and string “telephones,” and a pattern of drum beats.] [Assessment Boundary: Assessment does not include technological details for how communication devices work.]
Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation People also use a variety of devices to communicate (send and receive information) over long distances.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Use tools and materials provided to design a device that solves a specific problem.
Crosscutting Concepts: Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science, on Society and the Natural World People depend on various technologies in their lives; human life would be very different without technology.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.1.7: Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). Mathematics MP.5: Use appropriate tools strategically. 1.MD.1-2: Measure lengths indirectly and by iterating length units.
DCI Connections:
Connections to other DCIs in first grade: N/A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B ; 4.PS4.C; 4.ETS1.A
                Performance Expectation: Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.* [Clarification Statement: Examples of devices could include a light source to send signals, paper cup and string “telephones,” and a pattern of drum beats.] [Assessment Boundary: Assessment does not include technological details for how communication devices work.]
Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation People also use a variety of devices to communicate (send and receive information) over long distances.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Use tools and materials provided to design a device that solves a specific problem.
Crosscutting Concepts: Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science, on Society and the Natural World People depend on various technologies in their lives; human life would be very different without technology.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.1.7: Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). Mathematics MP.5: Use appropriate tools strategically. 1.MD.1-2: Measure lengths indirectly and by iterating length units.
DCI Connections:
Connections to other DCIs in first grade: N/A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B ; 4.PS4.C; 4.ETS1.A
Standard Identifier: 4-ESS3-1
                    Grade:
                    
                        4
                    
                
            
                        Disciplinary Core Idea:
                        
                            ESS3.A: Natural Resources
                        
                    
                
                        Cross Cutting Concept:
                        
                            CCC-2: Cause and Effect: Mechanism and Explanation
                        
                    
            
                        Science & Engineering Practice:
                        
                            SEP-8: Obtaining, Evaluating, and Communicating Information
                        
                    
                
                        Content Area:
                        
                            Earth and Space Science
                        
                    
            Title: 4-ESS3 Earth and Human Activity
Performance Expectation: Obtain and combine information to describe that energy and fuels are derived from natural resources and that their uses affect the environment. [Clarification Statement: Examples of renewable energy resources could include wind energy, water behind dams, and sunlight; non-renewable energy resources are fossil fuels and fissile materials. Examples of environmental effects could include loss of habitat due to dams, loss of habitat due to surface mining, and air pollution from burning of fossil fuels.]
Disciplinary Core Idea(s):
ESS3.A: Natural Resources Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Obtain and combine information from books and other reliable media to explain phenomena.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering. Influence of Science, Engineering and Technology on Society and the Natural World Over time, people’s needs and wants change, as do their demands for new and improved technologies.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services.
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. W.4.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.OA.1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 5.ESS3.C; MS.PS3.D; MS.ESS2.A; MS.ESS3.A; MS.ESS3.C; MS.ESS3.D
                Performance Expectation: Obtain and combine information to describe that energy and fuels are derived from natural resources and that their uses affect the environment. [Clarification Statement: Examples of renewable energy resources could include wind energy, water behind dams, and sunlight; non-renewable energy resources are fossil fuels and fissile materials. Examples of environmental effects could include loss of habitat due to dams, loss of habitat due to surface mining, and air pollution from burning of fossil fuels.]
Disciplinary Core Idea(s):
ESS3.A: Natural Resources Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not.
Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Obtain and combine information from books and other reliable media to explain phenomena.
Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering. Influence of Science, Engineering and Technology on Society and the Natural World Over time, people’s needs and wants change, as do their demands for new and improved technologies.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services.
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. W.4.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.OA.1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 5.ESS3.C; MS.PS3.D; MS.ESS2.A; MS.ESS3.A; MS.ESS3.C; MS.ESS3.D
Standard Identifier: 4-LS1-1
                    Grade:
                    
                        4
                    
                
            
                        Disciplinary Core Idea:
                        
                            LS1.A: Structure and Function
                        
                    
                
                        Cross Cutting Concept:
                        
                            CCC-4: Systems and Systems Models
                        
                    
            
                        Science & Engineering Practice:
                        
                            SEP-7: Engaging in Argument From Science
                        
                    
                
                        Content Area:
                        
                            Life Science
                        
                    
            Title: 4-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. [Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin.] [Assessment Boundary: Assessment is limited to macroscopic structures within plant and animal systems.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction.
Science & Engineering Practices: Engaging in Argument from Evidence Construct an argument with evidence, data, and/or a model.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.4.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics 4.G.3: Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 1.LS1.A; 3.LS3.B; MS.LS1.A
                Performance Expectation: Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. [Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin.] [Assessment Boundary: Assessment is limited to macroscopic structures within plant and animal systems.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction.
Science & Engineering Practices: Engaging in Argument from Evidence Construct an argument with evidence, data, and/or a model.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.4.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics 4.G.3: Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 1.LS1.A; 3.LS3.B; MS.LS1.A
Standard Identifier: 4-PS3-1
                    Grade:
                    
                        4
                    
                
            
                        Disciplinary Core Idea:
                        
                            PS3.A: Definitions of Energy
                        
                    
                
                        Cross Cutting Concept:
                        
                            CCC-5: Energy and Matter: Flows, Cycles, and Conservation
                        
                    
            
                        Science & Engineering Practice:
                        
                            SEP-6: Constructing Explanations and Designing Solutions
                        
                    
                
                        Content Area:
                        
                            Physical Science
                        
                    
            Title: 4-PS3 Energy
Performance Expectation: Use evidence to construct an explanation relating the speed of an object to the energy of that object. [Assessment Boundary: Assessment does not include quantitative measures of changes in the speed of an object or on any precise or quantitative definition of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy The faster a given object is moving, the more energy it possesses.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Use evidence (e.g., measurements, observations, patterns) to construct an explanation.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. RI.4.3: Explain events, procedures, ideas, or concepts in a historical, scientific, or technical text, including what happened and why, based on specific information in the text. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. W.4.2.a–d: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. W.4.9: Draw evidence from literary or informational texts to support analysis, reflection, and research.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: MS.PS3.A
                Performance Expectation: Use evidence to construct an explanation relating the speed of an object to the energy of that object. [Assessment Boundary: Assessment does not include quantitative measures of changes in the speed of an object or on any precise or quantitative definition of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy The faster a given object is moving, the more energy it possesses.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Use evidence (e.g., measurements, observations, patterns) to construct an explanation.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. RI.4.3: Explain events, procedures, ideas, or concepts in a historical, scientific, or technical text, including what happened and why, based on specific information in the text. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. W.4.2.a–d: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. W.4.9: Draw evidence from literary or informational texts to support analysis, reflection, and research.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: MS.PS3.A
Standard Identifier: 4-PS3-2
                    Grade:
                    
                        4
                    
                
            
                        Disciplinary Core Idea:
                        
                            PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer
                        
                    
                
                        Cross Cutting Concept:
                        
                            CCC-5: Energy and Matter: Flows, Cycles, and Conservation
                        
                    
            
                        Science & Engineering Practice:
                        
                            SEP-3: Planning and Carrying Out Investigations
                        
                    
                
                        Content Area:
                        
                            Physical Science
                        
                    
            Title: 4-PS3 Energy
Performance Expectation: Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. Light also transfers energy from place to place. Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy.
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: MS.PS3.A; MS.PS3.B; MS.PS4.B
                Performance Expectation: Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. Light also transfers energy from place to place. Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy.
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: MS.PS3.A; MS.PS3.B; MS.PS4.B
Standard Identifier: 4-PS3-3
                    Grade:
                    
                        4
                    
                
            
                        Disciplinary Core Idea:
                        
                            PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer, PS3.C: Relationship between Energy and Forces
                        
                    
                
                        Cross Cutting Concept:
                        
                            CCC-5: Energy and Matter: Flows, Cycles, and Conservation
                        
                    
            
                        Science & Engineering Practice:
                        
                            SEP-1: Asking Questions and Defining Problems
                        
                    
                
                        Content Area:
                        
                            Physical Science
                        
                    
            Title: 4-PS3 Energy
Performance Expectation: Ask questions and predict outcomes about the changes in energy that occur when objects collide. [Clarification Statement: Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact.] [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. PS3.C: Relationship Between Energy and Forces When objects collide, the contact forces transfer energy so as to change the objects’ motions.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.PS2.B; 3.PS2.A; MS.PS2.A; MS.PS3.A; MS.PS3.B; MS.PS3.C
                Performance Expectation: Ask questions and predict outcomes about the changes in energy that occur when objects collide. [Clarification Statement: Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact.] [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. PS3.C: Relationship Between Energy and Forces When objects collide, the contact forces transfer energy so as to change the objects’ motions.
Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.PS2.B; 3.PS2.A; MS.PS2.A; MS.PS3.A; MS.PS3.B; MS.PS3.C
Standard Identifier: 4-PS3-4
                    Grade:
                    
                        4
                    
                
            
                        Disciplinary Core Idea:
                        
                            PS3.B: Conservation of Energy and Energy Transfer, PS3.D: Energy in Chemical Processes, ETS1.A: Defining and Delimiting Engineering Problems
                        
                    
                
                        Cross Cutting Concept:
                        
                            CCC-2: Cause and Effect: Mechanism and Explanation
                        
                    
            
                        Science & Engineering Practice:
                        
                            SEP-6: Constructing Explanations and Designing Solutions
                        
                    
                
                        Content Area:
                        
                            Physical Science
                        
                    
            Title: 4-PS3 Energy
Performance Expectation: Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.* [Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound; and, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device.] [Assessment Boundary: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.]
Disciplinary Core Idea(s):
PS3.B: Conservation of Energy and Energy Transfer Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. PS3.D: Energy in Chemical Processes The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use. ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (secondary to 4-PS3-4)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas to solve design problems.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones. Connections to Nature of Science: Science is a Human Endeavor Most scientists and engineers work in teams. Science affects everyday life.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. Mathematics 4.OA.3: Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 5.PS3.D; 5.LS1.C; MS.PS3.A; MS.PS3.B; MS.ETS1.B; MS.ETS1.C
                Performance Expectation: Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.* [Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound; and, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device.] [Assessment Boundary: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.]
Disciplinary Core Idea(s):
PS3.B: Conservation of Energy and Energy Transfer Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. PS3.D: Energy in Chemical Processes The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use. ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (secondary to 4-PS3-4)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas to solve design problems.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones. Connections to Nature of Science: Science is a Human Endeavor Most scientists and engineers work in teams. Science affects everyday life.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. Mathematics 4.OA.3: Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 5.PS3.D; 5.LS1.C; MS.PS3.A; MS.PS3.B; MS.ETS1.B; MS.ETS1.C
Standard Identifier: 4-PS4-3
                    Grade:
                    
                        4
                    
                
            
                        Disciplinary Core Idea:
                        
                            PS4.C: Information Technologies and Instrumentation, ETS1.C: Optimizing the Design Solution
                        
                    
                
                        Cross Cutting Concept:
                        
                            CCC-1: Patterns
                        
                    
            
                        Science & Engineering Practice:
                        
                            SEP-6: Constructing Explanations and Designing Solutions
                        
                    
                
                        Content Area:
                        
                            Physical Science
                        
                    
            Title: 4-PS4 Waves and Their Applications in Technologies for Information Transfer
Performance Expectation: Generate and compare multiple solutions that use patterns to transfer information.* [Clarification Statement: Examples of solutions could include drums sending coded information through sound waves, using a grid of 1’s and 0’s representing black and white to send information about a picture, and using Morse code to send text.]
Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digitized form to voice—and vice versa. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (secondary to 4-PS4-3)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.
Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify designed products. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably.
DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; 3.PS2.A; MS.PS4.C; MS.ETS1.B
                Performance Expectation: Generate and compare multiple solutions that use patterns to transfer information.* [Clarification Statement: Examples of solutions could include drums sending coded information through sound waves, using a grid of 1’s and 0’s representing black and white to send information about a picture, and using Morse code to send text.]
Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digitized form to voice—and vice versa. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (secondary to 4-PS4-3)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.
Crosscutting Concepts: Patterns Similarities and differences in patterns can be used to sort and classify designed products. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably.
DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; 3.PS2.A; MS.PS4.C; MS.ETS1.B
        Showing 1 - 10 of 37 Standards
    
        
                Questions: Curriculum Frameworks and Instructional Resources Division |
                CFIRD@cde.ca.gov | 916-319-0881