Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 1 - 9 of 9 Standards

Standard Identifier: 4-PS3-3

Grade: 4
Disciplinary Core Idea: PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer, PS3.C: Relationship between Energy and Forces
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-1: Asking Questions and Defining Problems
Content Area: Physical Science

Title: 4-PS3 Energy

Performance Expectation: Ask questions and predict outcomes about the changes in energy that occur when objects collide. [Clarification Statement: Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact.] [Assessment Boundary: Assessment does not include quantitative measurements of energy.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. PS3.C: Relationship Between Energy and Forces When objects collide, the contact forces transfer energy so as to change the objects’ motions.

Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships.

Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.

DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.PS2.B; 3.PS2.A; MS.PS2.A; MS.PS3.A; MS.PS3.B; MS.PS3.C

Standard Identifier: 5-PS3-1

Grade: 5
Disciplinary Core Idea: PS3.D: Energy in Chemical Processes, LS1.C: Organization for Matter and Energy Flow in Organisms
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Physical Science

Title: 5-PS3 Energy

Performance Expectation: Use models to describe that energy in animals’ food (used for body repair, growth, and motion, and to maintain body warmth) was once energy from the sun. [Clarification Statement: Examples of models could include diagrams, and flow charts.]

Disciplinary Core Idea(s):
PS3.D: Energy in Chemical Processes The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). LS1.C: Organization for Matter and Energy Flow in Organisms Food provides animals with the materials they need for body repair and growth and the energy they need to maintain body warmth and for motion. (secondary to 5-PS3-1)

Science & Engineering Practices: Developing and Using Models Use models to describe phenomena.

Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RI.5.7: Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. SL.5.5: Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes.

DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: K.LS1.C; 2.LS2.A; 4.PS3.A; 4.PS3.B; 4.PS3.D; MS.PS3.D; MS.PS4.B; MS.LS1.C; MS.LS2.B

Standard Identifier: MS-ESS2-4

Grade Range: 6–8
Disciplinary Core Idea: ESS2.C: The Roles of Water in Earth's Surface Processes
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: MS-ESS2 Earth’s Systems

Performance Expectation: Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity. [Clarification Statement: Emphasis is on the ways water changes its state as it moves through the multiple pathways of the hydrologic cycle. Examples of models can be conceptual or physical.] [Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.]

Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes Water continually cycles among land, ocean, and atmosphere via transpiration, evaporation, condensation and crystallization, and precipitation, as well as downhill flows on land. Global movements of water and its changes in form are propelled by sunlight and gravity.

Science & Engineering Practices: Developing and Using Models Develop a model to describe unobservable mechanisms.

Crosscutting Concepts: Energy and Matter Within a natural or designed system, the transfer of energy drives the motion and/or cycling of matter.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.

California Common Core State Standards Connections:
N/A

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS2.B; MS.PS3.A; MS.PS3.D Articulation across grade-bands: 3.PS2.A; 4.PS3.B; 5.PS2.B; 5.ESS2.C; HS.PS2.B; HS.PS3.B; HS.PS3.D; HS.PS4.B; HS.ESS2.A; HS.ESS2.C; HS.ESS2.D

Standard Identifier: MS-PS1-6

Grade Range: 6–8
Disciplinary Core Idea: PS1.B: Chemical Reactions, ETS1.B: Developing Possible Solutions, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: MS-PS1 Matter and Its Interactions

Performance Expectation: Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.* [Clarification Statement: Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride.] [Assessment Boundary: Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device.]

Disciplinary Core Idea(s):
PS1.B: Chemical Reactions Some chemical reactions release energy, others store energy. ETS1.B: Developing Possible Solutions A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (secondary to MS-PS1-6) ETS1.C: Optimizing the Design Solution Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary to MS-PS1-6) The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary to MS-PS1-6)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints.

Crosscutting Concepts: Energy and Matter The transfer of energy can be tracked as energy flows through a designed or natural system.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS3.D Articulation across grade-bands: HS.PS1.A; HS.PS1.B; HS.PS3.A; HS.PS3.B; HS.PS3.D

Standard Identifier: MS-PS3-3

Grade Range: 6–8
Disciplinary Core Idea: PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer, ETS1.A: Defining and Delimiting Engineering Problems, ETS1.B: Developing Possible Solutions
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: MS-PS3 Energy

Performance Expectation: Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.* [Clarification Statement: Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. PS3.B: Conservation of Energy and Energy Transfer Energy is spontaneously transferred out of hotter regions or objects and into colder ones. ETS1.A: Defining and Delimiting Engineering Problems The more precisely a design task’s criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that is likely to limit possible solutions. (secondary to MS-PS3-3) ETS1.B: Developing Possible Solutions A solution needs to be tested, and then modified on the basis of the test results in order to improve it. There are systematic processes for evaluating solutions with respect to how well they meet criteria and constraints of a problem. (secondary to MS-PS3-3)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas or principles to design, construct, and test a design of an object, tool, process or system.

Crosscutting Concepts: Energy and Matter The transfer of energy can be tracked as energy flows through a designed or natural system.

California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.B; MS.ESS2.A; MS.ESS2.C; MS.ESS2.D Articulation across grade-bands: 4.PS3.B; HS.PS3.B

Standard Identifier: HS-ESS1-2

Grade Range: 9–12
Disciplinary Core Idea: ESS1.A: The Universe and its Stars, PS4.B: Electromagnetic Radiation
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, cycles, and conservation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Earth and Space Science

Title: HS-ESS1 Earth’s Place in the Universe

Performance Expectation: Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe. [Clarification Statement: Emphasis is on the astronomical evidence of the red shift of light from galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases (from the spectra of electromagnetic radiation from stars), which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).]

Disciplinary Core Idea(s):
ESS1.A: The Universe and its Stars The study of stars’ light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth. The Big Bang theory is supported by observations of distant galaxies receding from our own, of the measured composition of stars and non-stellar gases, and of the maps of spectra of the primordial radiation (cosmic microwave background) that still fills the universe. Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the process releases electromagnetic energy. Heavier elements are produced when certain massive stars achieve a supernova stage and explode. PS4.B: Electromagnetic Radiation Atoms of each element emit and absorb characteristic frequencies of light. These characteristics allow identification of the presence of an element, even in microscopic quantities. (secondary to HS-ESS1-2)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Connections to Nature of Science: Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence.

Crosscutting Concepts: Energy and Matter Energy cannot be created or destroyed–only moved between one place and another place, between objects and/or fields, or between systems. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future. Science assumes the universe is a vast single system in which basic laws are consistent.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-10.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems. A-SSE.1.a-b: Interpret expressions that represent a quantity in terms of its context. A-CED.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-CED.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.C; HS.PS3.A; HS.PS3.B; HS.PS4.A Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS1.A

Standard Identifier: HS-ESS2-3

Grade Range: 9–12
Disciplinary Core Idea: ESS2.A: Earth Materials and Systems, ESS2.B: Plate Tectonics and Large-Scale System Interactions, PS4.A: Wave Properties
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: HS-ESS2 Earth’s Systems

Performance Expectation: Develop a model based on evidence of Earth’s interior to describe the cycling of matter by thermal convection. [Clarification Statement: Emphasis is on both a one-dimensional model of Earth, with radial layers determined by density, and a three-dimensional model, which is controlled by mantle convection and the resulting plate tectonics. Examples of evidence include maps of Earth’s three-dimensional structure obtained from seismic waves, records of the rate of change of Earth’s magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth’s layers from high-pressure laboratory experiments.]

Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Evidence from deep probes and seismic waves, reconstructions of historical changes in Earth’s surface and its magnetic field, and an understanding of physical and chemical processes lead to a model of Earth with a hot but solid inner core, a liquid outer core, a solid mantle and crust. Motions of the mantle and its plates occur primarily through thermal convection, which involves the cycling of matter due to the outward flow of energy from Earth’s interior and gravitational movement of denser materials toward the interior. ESS2.B: Plate Tectonics and Large-Scale System Interactions The radioactive decay of unstable isotopes continually generates new energy within Earth’s crust and mantle, providing the primary source of the heat that drives mantle convection. Plate tectonics can be viewed as the surface expression of mantle convection. PS4.A: Wave Properties Geologists use seismic waves and their reflection at interfaces between layers to probe structures deep in the planet. (secondary to HS-ESS2-3)

Science & Engineering Practices: Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or between components of a system. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based on empirical evidence. Science disciplines share common rules of evidence used to evaluate explanations about natural systems. Science includes the process of coordinating patterns of evidence with current theory.

Crosscutting Concepts: Energy and Matter Energy drives the cycling of matter within and between systems. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS2.B; HS.PS3.B; HS.PS3.D; Articulation across grade-bands: MS.PS1.A; MS.PS1.B; MS.PS2.B; MS.PS3.A; MS.PS3.B; MS.ESS2.A; MS.ESS2.B

Standard Identifier: HS-ESS2-6

Grade Range: 9–12
Disciplinary Core Idea: ESS2.D: Weather and Climate
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Earth and Space Science

Title: HS-ESS2 Earth’s Systems

Performance Expectation: Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. [Clarification Statement: Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, and biosphere (including humans), providing the foundation for living organisms.]

Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen. Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate.

Science & Engineering Practices: Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or between components of a system.

Crosscutting Concepts: Energy and Matter The total amount of energy and matter in closed systems is conserved.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.B Articulation across grade-bands: MS.PS1.A; MS.PS3.D; MS.PS4.B; MS.LS2.B; MS.ESS2.A; MS.ESS2.B; MS.ESS2.C; MS.ESS3.C; MS.ESS3.D

Standard Identifier: HS-PS3-3

Grade Range: 9–12
Disciplinary Core Idea: PS3.A: Definitions of Energy, PS3.D: Energy in Chemical Processes, ETS1.A: Defining and Delimiting Engineering Problems
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: HS-PS3 Energy

Performance Expectation: Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.* [Clarification Statement: Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and generators. Examples of constraints could include use of renewable energy forms and efficiency.] [Assessment Boundary: Assessment for quantitative evaluations is limited to total output for a given input. Assessment is limited to devices constructed with materials provided to students.]

Disciplinary Core Idea(s):
PS3.A: Definitions of Energy At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. PS3.D: Energy in Chemical Processes Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment. ETS1.A: Defining and Delimiting Engineering Problems Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary to HS-PS3-3)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Design, evaluate, and/or refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.

Crosscutting Concepts: Energy and Matter Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World Modern civilization depends on major technological systems. Engineers continuously modify these technological systems by applying scientific knowledge and Engineering, Technology, and Applications of Science practices to increase benefits while decreasing costs and risks.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.

DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS3.A Articulation across grade-bands: MS.PS3.A; MS.PS3.B; MS.ESS2.A

Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881