Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 21 - 30 of 33 Standards

Standard Identifier: MS-ETS1-3

Grade Range: 6–8
Disciplinary Core Idea: ETS1.B: Developing Possible Solutions, ETS1.C: Optimizing the Design Solution
Science & Engineering Practice: SEP-4: Analyzing and Interpreting Data
Content Area: Engineering, Technology, and Applications of Science

Title: MS-ETS1 Engineering, Technology, and Applications of Science

Performance Expectation: Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors. ETS1.C: Optimizing the Design Solution Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process—that is, some of those characteristics may be incorporated into the new design.

Science & Engineering Practices: Analyzing and Interpreting Data Analyze and interpret data to determine similarities and differences in findings.

Crosscutting Concepts: N/A

California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of consideration and decision-making processes.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. Mathematics MP.2: Reason abstractly and quantitatively.

DCI Connections:
Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6; MS-PS3-3 Life Science: MS-LS2-5 Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6 Articulation across grade-bands: 3-5.ETS1.A; 3-5.ETS1.B; 3-5.ETS1.C; HS.ETS1.B; HS.ETS1.C

Standard Identifier: MS-ETS1-4

Grade Range: 6–8
Disciplinary Core Idea: ETS1.B: Developing Possible Solutions, ETS1.C: Optimizing the Design Solution
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Engineering, Technology, and Applications of Science

Title: MS-ETS1 Engineering, Technology, and Applications of Science

Performance Expectation: Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Disciplinary Core Idea(s):
ETS1.B: Developing Possible Solutions A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. Models of all kinds are important for testing solutions. ETS1.C: Optimizing the Design Solution The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution.

Science & Engineering Practices: Developing and Using Models Develop a model to generate data to test ideas about designed systems, including those representing inputs and outputs.

Crosscutting Concepts: N/A

California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of consideration and decision-making processes.

California Common Core State Standards Connections:
ELA/Literacy SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.2: Reason abstractly and quantitatively.

DCI Connections:
Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6; MS-PS3-3 Life Science: MS-LS2-5 Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6 Articulation across grade-bands: 3-5.ETS1.B; 3-5.ETS1.C; HS.ETS1.B; HS.ETS1.C

Standard Identifier: MS-LS3-1

Grade Range: 6–8
Disciplinary Core Idea: LS3.A: Inheritance of Traits, LS3.B: Variation of Traits
Cross Cutting Concept: CCC-6: Structure and Function
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: MS-LS3 Heredity: Inheritance and Variation of Traits

Performance Expectation: Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. [Clarification Statement: Emphasis is on conceptual understanding that changes in genetic material may result in making different proteins.] [Assessment Boundary: Assessment does not include specific changes at the molecular level, mechanisms for protein synthesis, or specific types of mutations.]

Disciplinary Core Idea(s):
LS3.A: Inheritance of Traits Genes are located in the chromosomes of cells, with each chromosome pair containing two variants of each of many distinct genes. Each distinct gene chiefly controls the production of specific proteins, which in turn affects the traits of the individual. Changes (mutations) to genes can result in changes to proteins, which can affect the structures and functions of the organism and thereby change traits. LS3.B: Variation of Traits In addition to variations that arise from sexual reproduction, genetic information can be altered because of mutations. Though rare, mutations may result in changes to the structure and function of proteins. Some changes are beneficial, others harmful, and some neutral to the organism.

Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.

Crosscutting Concepts: Structure and Function Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the shapes, composition, and relationships among its parts, therefore complex natural structures/systems can be analyzed to determine how they function.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.6–8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6–8.4: Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics. RST.6–8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). SL.8.5: Integrate multimedia components and visual displays in presentations to clarify claims and findings and emphasize salient points.

DCI Connections:
Connections to other DCIs in this grade-band: MS.LS1.A; MS.LS4.A Articulation across grade-bands: 3.LS3.A; 3.LS3.B; HS.LS1.A; HS.LS1.B; HS.LS3.A; HS.LS3.B

Standard Identifier: MS-LS3-2

Grade Range: 6–8
Disciplinary Core Idea: LS1.B: Growth and Development of Organisms, LS3.A: Inheritance of Traits, LS3.B: Variation of Traits
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-2: Developing and Using Models
Content Area: Life Science

Title: MS-LS3 Heredity: Inheritance and Variation of Traits

Performance Expectation: Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. [Clarification Statement: Emphasis is on using models such as Punnett squares, diagrams, and simulations to describe the cause and effect relationship of gene transmission from parent(s) to offspring and resulting genetic variation.]

Disciplinary Core Idea(s):
LS1.B: Growth and Development of Organisms Organisms reproduce, either sexually or asexually, and transfer their genetic information to their offspring. (secondary to MS-LS3-2) LS3.A: Inheritance of Traits Variations of inherited traits between parent and offspring arise from genetic differences that result from the subset of chromosomes (and therefore genes) inherited. LS3.B: Variation of Traits In sexually reproducing organisms, each parent contributes half of the genes acquired (at random) by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may differ from each other.

Science & Engineering Practices: Developing and Using Models Develop and use a model to describe phenomena.

Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural systems.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.4: Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics. RST.6-8.7: Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics MP.4: Model with mathematics. 6.SP.5.a-d: Summarize numerical data sets in relation to their context.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 3.LS3.A; 3.LS3.B; HS.LS1.B; HS.LS3.A; HS.LS3.B

Standard Identifier: MS-PS1-6

Grade Range: 6–8
Disciplinary Core Idea: PS1.B: Chemical Reactions, ETS1.B: Developing Possible Solutions, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept: CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: MS-PS1 Matter and Its Interactions

Performance Expectation: Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.* [Clarification Statement: Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride.] [Assessment Boundary: Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device.]

Disciplinary Core Idea(s):
PS1.B: Chemical Reactions Some chemical reactions release energy, others store energy. ETS1.B: Developing Possible Solutions A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (secondary to MS-PS1-6) ETS1.C: Optimizing the Design Solution Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary to MS-PS1-6) The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary to MS-PS1-6)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints.

Crosscutting Concepts: Energy and Matter The transfer of energy can be tracked as energy flows through a designed or natural system.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS3.D Articulation across grade-bands: HS.PS1.A; HS.PS1.B; HS.PS3.A; HS.PS3.B; HS.PS3.D

Standard Identifier: MS-PS4-3

Grade Range: 6–8
Disciplinary Core Idea: PS4.C: Information Technologies and Instrumentation
Cross Cutting Concept: CCC-6: Structure and Function
Science & Engineering Practice: SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area: Physical Science

Title: MS-PS4 Waves and Their Applications in Technologies for Information Transfer

Performance Expectation: Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. [Clarification Statement: Emphasis is on a basic understanding that waves can be used for communication purposes. Examples could include using fiber optic cable to transmit light pulses, radio wave pulses in wifi devices, and conversion of stored binary patterns to make sound or text on a computer screen.] [Assessment Boundary: Assessment does not include binary counting. Assessment does not include the specific mechanism of any given device.]

Disciplinary Core Idea(s):
PS4.C: Information Technologies and Instrumentation Digitized signals (sent as wave pulses) are a more reliable way to encode and transmit information.

Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Integrate qualitative scientific and technical information in written text with that contained in media and visual displays to clarify claims and findings.

Crosscutting Concepts: Structure and Function Structures can be designed to serve particular functions. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World Technologies extend the measurement, exploration, modeling, and computational capacity of scientific investigations. Connections to Nature of Science: Science is a Human Endeavor Advances in technology influence the progress of science and science has influenced advances in technology.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.2: Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. WHST.6-8.9: Draw evidence from informational texts to support analysis, reflection, and research.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: 4.PS4.C; HS.PS4.A; HS.PS4.C

Standard Identifier: HS-ESS2-5

Grade Range: 9–12
Disciplinary Core Idea: ESS2.C: The Roles of Water in Earth's Surface Processes
Cross Cutting Concept: CCC-6: Structure and Function
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Earth and Space Science

Title: HS-ESS2 Earth’s Systems

Performance Expectation: Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. [Clarification Statement: Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).]

Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes The abundance of liquid water on Earth’s surface and its unique combination of physical and chemical properties are central to the planet’s dynamics. These properties include water’s exceptional capacity to absorb, store, and release large amounts of energy, transmit sunlight, expand upon freezing, dissolve and transport materials, and lower the viscosities and melting points of rocks.

Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.

Crosscutting Concepts: Structure and Function The functions and properties of natural and designed objects and systems can be inferred from their overall structure, the way their components are shaped and used, and the molecular substructures of its various materials.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.A; HS.PS1.B; HS.PS3.B; HS.ESS3.C Articulation across grade-bands: MS.PS1.A; MS.PS4.B; MS.ESS2.A; MS.ESS2.C; MS.ESS2.D

Standard Identifier: HS-ESS2-7

Grade Range: 9–12
Disciplinary Core Idea: ESS2.D: Weather and Climate, ESS2.E: Biogeology
Cross Cutting Concept: CCC-7: Stability and Change
Science & Engineering Practice: SEP-7: Engaging in Argument From Science
Content Area: Earth and Space Science

Title: HS-ESS2 Earth’s Systems

Performance Expectation: Construct an argument based on evidence about the simultaneous coevolution of Earth’s systems and life on Earth. [Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth’s other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth’s surface. Examples include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms.] [Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth’s other systems.]

Disciplinary Core Idea(s):
ESS2.D: Weather and Climate Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen. ESS2.E: Biogeology The many dynamic and delicate feedbacks between the biosphere and other Earth systems cause a continual co-evolution of Earth’s surface and the life that exists on it.

Science & Engineering Practices: Engaging in Argument from Evidence Construct an oral and written argument or counter-arguments based on data and evidence.

Crosscutting Concepts: Stability and Change Much of science deals with constructing explanations of how things change and how they remain stable.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.1.a-e: Write arguments focused on discipline-specific content.

DCI Connections:
Connections to other DCIs in this grade-band: HS.LS2.A; HS.LS2.C; HS.LS4.A; HS.LS4.B; HS.LS4.C; HS.LS4.D Articulation across grade-bands: MS.LS2.A; MS.LS2.C; MS.LS4.A; MS.LS4.B; MS.LS4.C; MS.ESS1.C; MS.ESS2.A; MS.ESS2.C; MS.ESS3.C

Standard Identifier: HS-ETS1-2

Grade Range: 9–12
Disciplinary Core Idea: ETS1.C: Optimizing the Design Solution
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Engineering, Technology, and Applications of Science

Title: HS-ETS1 Engineering, Technology, and Applications of Science

Performance Expectation: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

Disciplinary Core Idea(s):
ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Design a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.

Crosscutting Concepts: N/A

California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.

California Common Core State Standards Connections:
Mathematics MP.4: Model with mathematics.

DCI Connections:
Connections to HS-ETS1.C: Optimizing the Design Solution include: Physical Science: HS-PS1-6; HS-PS2-3 Articulation across grade-bands: MS.ETS1.A; MS.ETS1.B; MS.ETS1.C

Standard Identifier: HS-LS3-1

Grade Range: 9–12
Disciplinary Core Idea: LS1.A: Structure and Function, LS3.A: Inheritance of Traits
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-1: Asking Questions and Defining Problems
Content Area: Life Science

Title: HS-LS3 Heredity: Inheritance and Variation of Traits

Performance Expectation: Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring. [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]

Disciplinary Core Idea(s):
LS1.A: Structure and Function All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins. (secondary to HS-LS3-1) (Note: This Disciplinary Core Idea is also addressed by HS-LS1-1.) LS3.A: Inheritance of Traits Each chromosome consists of a single very long DNA molecule, and each gene on the chromosome is a particular segment of that DNA. The instructions for forming species’ characteristics are carried in DNA. All cells in an organism have the same genetic content, but the genes used (expressed) by the cell may be regulated in different ways. Not all DNA codes for a protein; some segments of DNA are involved in regulatory or structural functions, and some have no as-yet known function.

Science & Engineering Practices: Asking Questions and Defining Problems Ask questions that arise from examining models or a theory to clarify relationships.

Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.

California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. RST.11-12.9: Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.

DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS3.A; MS.LS3.B

Showing 21 - 30 of 33 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881