Science (CA NGSS) Standards
Results
Showing 1 - 10 of 12 Standards
Standard Identifier: 2-PS1-1
Grade:
2
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Physical Science
Title: 2-PS1 Matter and Its Interactions
Performance Expectation: Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question.
Crosscutting Concepts: Patterns Patterns in the natural and human designed world can be observed.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.2.7: Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.4: Model with mathematics. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 5.PS1.A
Performance Expectation: Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question.
Crosscutting Concepts: Patterns Patterns in the natural and human designed world can be observed.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.2.7: Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). W.2.8: Recall information from experiences or gather information from provided sources to answer a question. Mathematics MP.4: Model with mathematics. 2.MD.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
DCI Connections:
Connections to other DCIs in second grade: N/A Articulation across grade-levels: 5.PS1.A
Standard Identifier: 3-LS4-4
Grade:
3
Disciplinary Core Idea:
LS4.D: Biodiversity and Humans
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: 3-LS4 Biological Evolution: Unity and Diversity
Performance Expectation: Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.* [Clarification Statement: Examples of environmental changes could include changes in land characteristics, water distribution, temperature, food, and other organisms.] [Assessment Boundary: Assessment is limited to a single environmental change. Assessment does not include the greenhouse effect or climate change.]
Disciplinary Core Idea(s):
LS4.D: Biodiversity and Humans Populations live in a variety of habitats, and change in those habitats affects the organisms living there.
Science & Engineering Practices: Engaging in Argument from Evidence Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.3.1.a–d: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2.a–d: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.1: Write opinion pieces on topics or texts, supporting a point of view with reasons. W.3.2: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. SL.3.4: Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. a. Plan and deliver an informative/explanatory presentation on a topic that: organizes ideas around major points of information, follows a logical sequence, includes supporting details, uses clear and specific vocabulary, and provides a strong conclusion. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in third grade: 3.ESS3.B Articulation across grade-levels: K.ESS3.A; K.ETS1.A; 2.LS2.A; 2.LS4.D; 4.ESS3.B; 4.ETS1.A; MS.LS2.A; MS.LS2.C; MS.LS4.C; MS.ESS1.C; MS.ESS3.C
Performance Expectation: Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.* [Clarification Statement: Examples of environmental changes could include changes in land characteristics, water distribution, temperature, food, and other organisms.] [Assessment Boundary: Assessment is limited to a single environmental change. Assessment does not include the greenhouse effect or climate change.]
Disciplinary Core Idea(s):
LS4.D: Biodiversity and Humans Populations live in a variety of habitats, and change in those habitats affects the organisms living there.
Science & Engineering Practices: Engaging in Argument from Evidence Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy RI.3.1.a–d: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2.a–d: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.1: Write opinion pieces on topics or texts, supporting a point of view with reasons. W.3.2: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. SL.3.4: Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. a. Plan and deliver an informative/explanatory presentation on a topic that: organizes ideas around major points of information, follows a logical sequence, includes supporting details, uses clear and specific vocabulary, and provides a strong conclusion. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in third grade: 3.ESS3.B Articulation across grade-levels: K.ESS3.A; K.ETS1.A; 2.LS2.A; 2.LS4.D; 4.ESS3.B; 4.ETS1.A; MS.LS2.A; MS.LS2.C; MS.LS4.C; MS.ESS1.C; MS.ESS3.C
Standard Identifier: 3-PS2-2
Grade:
3
Disciplinary Core Idea:
PS2.A: Forces and Motion
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Physical Science
Title: 3-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion. [Clarification Statement: Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, and two children on a see-saw.] [Assessment Boundary: Assessment does not include technical terms such as period and frequency.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion The patterns of an object’s motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.)
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Science findings are based on recognizing patterns.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.3.7: Conduct short research projects that build knowledge about a topic. W.3.8: Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: 1.ESS1.A; 4.PS4.A; MS.PS2.A; MS.ESS1.B
Performance Expectation: Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion. [Clarification Statement: Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, and two children on a see-saw.] [Assessment Boundary: Assessment does not include technical terms such as period and frequency.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion The patterns of an object’s motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.)
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution. Connections to Nature of Science: Science Knowledge is Based on Empirical Evidence Science findings are based on recognizing patterns.
Crosscutting Concepts: Patterns Patterns of change can be used to make predictions.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.3.7: Conduct short research projects that build knowledge about a topic. W.3.8: Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories.
DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: 1.ESS1.A; 4.PS4.A; MS.PS2.A; MS.ESS1.B
Standard Identifier: 4-LS1-1
Grade:
4
Disciplinary Core Idea:
LS1.A: Structure and Function
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: 4-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. [Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin.] [Assessment Boundary: Assessment is limited to macroscopic structures within plant and animal systems.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction.
Science & Engineering Practices: Engaging in Argument from Evidence Construct an argument with evidence, data, and/or a model.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.4.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics 4.G.3: Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 1.LS1.A; 3.LS3.B; MS.LS1.A
Performance Expectation: Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. [Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin.] [Assessment Boundary: Assessment is limited to macroscopic structures within plant and animal systems.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction.
Science & Engineering Practices: Engaging in Argument from Evidence Construct an argument with evidence, data, and/or a model.
Crosscutting Concepts: Systems and System Models A system can be described in terms of its components and their interactions.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.
California Common Core State Standards Connections:
ELA/Literacy W.4.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics 4.G.3: Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 1.LS1.A; 3.LS3.B; MS.LS1.A
Standard Identifier: 4-PS3-2
Grade:
4
Disciplinary Core Idea:
PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Physical Science
Title: 4-PS3 Energy
Performance Expectation: Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. Light also transfers energy from place to place. Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy.
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: MS.PS3.A; MS.PS3.B; MS.PS4.B
Performance Expectation: Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. PS3.B: Conservation of Energy and Energy Transfer Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. Light also transfers energy from place to place. Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy.
Science & Engineering Practices: Planning and Carrying Out Investigations Make observations to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution.
Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources.
DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: MS.PS3.A; MS.PS3.B; MS.PS4.B
Standard Identifier: 5-LS1-1
Grade:
5
Disciplinary Core Idea:
LS1.C: Organization for Matter and Energy Flow in Organisms
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: 5-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Support an argument that plants get the materials they need for growth chiefly from air and water. [Clarification Statement: Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil.]
Disciplinary Core Idea(s):
LS1.C: Organization for Matter and Energy Flow in Organisms Plants acquire their material for growth chiefly from air and water.
Science & Engineering Practices: Engaging in Argument from Evidence Support an argument with evidence, data, or a model.
Crosscutting Concepts: Energy and Matter Matter is transported into, out of, and within systems.
California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RI.5.1: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. W.5.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 5.MD.1: Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.
DCI Connections:
Connections to other DCIs in fifth grade: 5.PS1.A Articulation across grade-levels: K.LS1.C; 2.LS2.A; MS.LS1.C
Performance Expectation: Support an argument that plants get the materials they need for growth chiefly from air and water. [Clarification Statement: Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil.]
Disciplinary Core Idea(s):
LS1.C: Organization for Matter and Energy Flow in Organisms Plants acquire their material for growth chiefly from air and water.
Science & Engineering Practices: Engaging in Argument from Evidence Support an argument with evidence, data, or a model.
Crosscutting Concepts: Energy and Matter Matter is transported into, out of, and within systems.
California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RI.5.1: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. RI.5.9: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. W.5.1.a–d: Write opinion pieces on topics or texts, supporting a point of view with reasons and information. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 5.MD.1: Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.
DCI Connections:
Connections to other DCIs in fifth grade: 5.PS1.A Articulation across grade-levels: K.LS1.C; 2.LS2.A; MS.LS1.C
Standard Identifier: MS-LS1-3
Grade Range:
6–8
Disciplinary Core Idea:
LS1.A: Structure and Function
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Life Science
Title: MS-LS1 From Molecules to Organisms: Structures and Processes
Performance Expectation: Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. [Clarification Statement: Emphasis is on the conceptual understanding that cells form tissues and tissues form organs specialized for particular body functions. Examples could include the interaction of subsystems within a system and the normal functioning of those systems.] [Assessment Boundary: Assessment does not include the mechanism of one body system independent of others. Assessment is limited to the circulatory, excretory, digestive, respiratory, muscular, and nervous systems.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions.
Science & Engineering Practices: Engaging in Argument from Evidence Use an oral and written argument supported by evidence to support or refute an explanation or a model for a phenomenon.
Crosscutting Concepts: Systems and System Models Systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. Connections to Nature of Science: Science is a Human Endeavor Scientists and engineers are guided by habits of mind such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RI.6.8: Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.LS1.A
Performance Expectation: Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. [Clarification Statement: Emphasis is on the conceptual understanding that cells form tissues and tissues form organs specialized for particular body functions. Examples could include the interaction of subsystems within a system and the normal functioning of those systems.] [Assessment Boundary: Assessment does not include the mechanism of one body system independent of others. Assessment is limited to the circulatory, excretory, digestive, respiratory, muscular, and nervous systems.]
Disciplinary Core Idea(s):
LS1.A: Structure and Function In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions.
Science & Engineering Practices: Engaging in Argument from Evidence Use an oral and written argument supported by evidence to support or refute an explanation or a model for a phenomenon.
Crosscutting Concepts: Systems and System Models Systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. Connections to Nature of Science: Science is a Human Endeavor Scientists and engineers are guided by habits of mind such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.
California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RI.6.8: Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content. Mathematics 6.EE.9: Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: HS.LS1.A
Standard Identifier: MS-PS2-4
Grade Range:
6–8
Disciplinary Core Idea:
PS2.B: Types of Interactions
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Physical Science
Title: MS-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. [Clarification Statement: Examples of evidence for arguments could include data generated from simulations or digital tools; and charts displaying mass, strength of interaction, distance from the Sun, and orbital periods of objects within the solar system.] [Assessment Boundary: Assessment does not include Newton’s Law of Gravitation or Kepler’s Laws.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Gravitational forces are always attractive. There is a gravitational force between any two masses, but it is very small except when one or both of the objects have large mass—e.g., Earth and the sun.
Science & Engineering Practices: Engaging in Argument from Evidence Construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy and matter flows within systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy WHST.6–8.1.a–e: Write arguments focused on discipline-specific content.
DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS1.A ; MS.ESS1.B ; MS.ESS2.C Articulation across grade-bands: 5.PS2.B ; HS.PS2.B ; HS.ESS1.B
Performance Expectation: Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. [Clarification Statement: Examples of evidence for arguments could include data generated from simulations or digital tools; and charts displaying mass, strength of interaction, distance from the Sun, and orbital periods of objects within the solar system.] [Assessment Boundary: Assessment does not include Newton’s Law of Gravitation or Kepler’s Laws.]
Disciplinary Core Idea(s):
PS2.B: Types of Interactions Gravitational forces are always attractive. There is a gravitational force between any two masses, but it is very small except when one or both of the objects have large mass—e.g., Earth and the sun.
Science & Engineering Practices: Engaging in Argument from Evidence Construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy and matter flows within systems.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy WHST.6–8.1.a–e: Write arguments focused on discipline-specific content.
DCI Connections:
Connections to other DCIs in this grade-band: MS.ESS1.A ; MS.ESS1.B ; MS.ESS2.C Articulation across grade-bands: 5.PS2.B ; HS.PS2.B ; HS.ESS1.B
Standard Identifier: MS-PS3-5
Grade Range:
6–8
Disciplinary Core Idea:
PS3.B: Conservation of Energy and Energy Transfer
Cross Cutting Concept:
CCC-5: Energy and Matter: Flows, Cycles, and Conservation
Science & Engineering Practice:
SEP-7: Engaging in Argument From Science
Content Area:
Physical Science
Title: MS-PS3 Energy
Performance Expectation: Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. [Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.] [Assessment Boundary: Assessment does not include calculations of energy.]
Disciplinary Core Idea(s):
PS3.B: Conservation of Energy and Energy Transfer When the motion energy of an object changes, there is inevitably some other change in energy at the same time.
Science & Engineering Practices: Engaging in Argument from Evidence Construct, use, and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Energy and Matter Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion).
California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content. Mathematics MP.2: Reason abstractly and quantitatively. 6.RP.1: Understand the concept of ratio and use ratio language to describe a ratio relationship between two quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A Articulation across grade-bands: 4.PS3.C; HS.PS3.A; HS.PS3.B
Performance Expectation: Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. [Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.] [Assessment Boundary: Assessment does not include calculations of energy.]
Disciplinary Core Idea(s):
PS3.B: Conservation of Energy and Energy Transfer When the motion energy of an object changes, there is inevitably some other change in energy at the same time.
Science & Engineering Practices: Engaging in Argument from Evidence Construct, use, and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence Science knowledge is based upon logical and conceptual connections between evidence and explanations.
Crosscutting Concepts: Energy and Matter Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion).
California Environmental Principles and Concepts:
Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both.
California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. WHST.6–8.1.a–e: Write arguments focused on discipline-specific content. Mathematics MP.2: Reason abstractly and quantitatively. 6.RP.1: Understand the concept of ratio and use ratio language to describe a ratio relationship between two quantities.
DCI Connections:
Connections to other DCIs in this grade-band: MS.PS2.A Articulation across grade-bands: 4.PS3.C; HS.PS3.A; HS.PS3.B
Standard Identifier: HS-PS1-3
Grade Range:
9–12
Disciplinary Core Idea:
PS1.A: Structure and Properties of Matter, PS2.B: Types of Interactions
Cross Cutting Concept:
CCC-1: Patterns
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Physical Science
Title: HS-PS1 Matter and Its Interactions
Performance Expectation: Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles. [Clarification Statement: Emphasis is on understanding the strengths of forces between particles, not on naming specific intermolecular forces (such as dipole-dipole). Examples of particles could include ions, atoms, molecules, and networked materials (such as graphite). Examples of bulk properties of substances could include the melting point and boiling point, vapor pressure, and surface tension.] [Assessment Boundary: Assessment does not include Raoult’s law calculations of vapor pressure.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter The structure and interactions of matter at the bulk scale are determined by electrical forces within and between atoms. PS2.B: Types of Interactions Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (secondary to HS-PS1-3)
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.
Crosscutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.11-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. WHST.11-12.8: Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. WHST.9-12.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS2.C Articulation across grade-bands: MS.PS1.A; MS.PS2.B
Performance Expectation: Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles. [Clarification Statement: Emphasis is on understanding the strengths of forces between particles, not on naming specific intermolecular forces (such as dipole-dipole). Examples of particles could include ions, atoms, molecules, and networked materials (such as graphite). Examples of bulk properties of substances could include the melting point and boiling point, vapor pressure, and surface tension.] [Assessment Boundary: Assessment does not include Raoult’s law calculations of vapor pressure.]
Disciplinary Core Idea(s):
PS1.A: Structure and Properties of Matter The structure and interactions of matter at the bulk scale are determined by electrical forces within and between atoms. PS2.B: Types of Interactions Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (secondary to HS-PS1-3)
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.
Crosscutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.11-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. WHST.11-12.8: Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. WHST.9-12.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS2.C Articulation across grade-bands: MS.PS1.A; MS.PS2.B
Showing 1 - 10 of 12 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881