Skip to main content
California Department of Education Logo

Science (CA NGSS) Standards




Results


Showing 11 - 20 of 37 Standards

Standard Identifier: 3-LS4-2

Grade: 3
Disciplinary Core Idea: LS4.B: Natural Selection
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Life Science

Title: 3-LS4 Biological Evolution: Unity and Diversity

Performance Expectation: Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. [Clarification Statement: Examples of cause and effect relationships could be plants that have larger thorns than other plants may be less likely to be eaten by predators; and, animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.]

Disciplinary Core Idea(s):
LS4.B: Natural Selection Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Use evidence (e.g., observations, patterns) to construct an explanation.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change.

California Environmental Principles and Concepts:
Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RI.3.1.a–d: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. RI.3.2.a–d: Determine the main idea of a text; recount the key details and explain how they support the main idea. RI.3.3: Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. W.3.2: Write informative/explanatory texts to examine a topic and convey ideas and information clearly. SL.3.4: Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. a. Plan and deliver an informative/explanatory presentation on a topic that: organizes ideas around major points of information, follows a logical sequence, includes supporting details, uses clear and specific vocabulary, and provides a strong conclusion. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 3.MD.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.

DCI Connections:
Connections to other DCIs in third grade: 3.LS4.C Articulation across grade-levels: MS.LS2.A; MS.LS3.B; MS.LS4.B

Standard Identifier: 3-PS2-1

Grade: 3
Disciplinary Core Idea: PS2.A: Forces and Motion, PS2.B: Types of Interactions
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Physical Science

Title: 3-PS2 Motion and Stability: Forces and Interactions

Performance Expectation: Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. [Clarification Statement: Examples could include an unbalanced force on one side of a ball can make it start moving; and, balanced forces pushing on a box from both sides will not produce any motion at all.] [Assessment Boundary: Assessment is limited to one variable at a time: number, size, or direction of forces. Assessment does not include quantitative force size, only qualitative and relative. Assessment is limited to gravity being addressed as a force that pulls objects down.]

Disciplinary Core Idea(s):
PS2.A: Forces and Motion Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object’s speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.) PS2.B: Types of Interactions Objects in contact exert forces on each other.

Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. Connections to Nature of Science: Scientific Investigations Use a Variety of Methods Science investigations use a variety of methods, tools, and techniques.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy RI.3.1: Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. W.3.7: Conduct short research projects that build knowledge about a topic. W.3.8: Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. Mathematics MP.2: Reason abstractly and quantitatively. MP.5: Use appropriate tools strategically. 3.MD.2: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem.

DCI Connections:
Connections to other DCIs in third grade: N/A Articulation across grade-levels: K.PS2.A; K.PS2.B; K.PS3.C; 5.PS2.B; MS.PS2.A; MS.ESS1.B; MS.ESS2.C

Standard Identifier: 4-ESS2-1

Grade: 4
Disciplinary Core Idea: ESS2.A: Earth Materials and Systems, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Earth and Space Science

Title: 4-ESS2 Earth’s Systems

Performance Expectation: Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. [Clarification Statement: Examples of variables to test could include angle of slope in the downhill movement of water, amount of vegetation, speed of wind, relative rate of deposition, cycles of freezing and thawing of water, cycles of heating and cooling, and volume of water flow.] [Assessment Boundary: Assessment is limited to a single form of weathering or erosion.]

Disciplinary Core Idea(s):
ESS2.A: Earth Materials and Systems Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. ESS2.E: Biogeology Living things affect the physical characteristics of their regions.

Science & Engineering Practices: Planning and Carrying Out Investigations Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy W4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. MP.5: Use appropriate tools strategically. 4.MD.A.1: Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1,12), (2, 24), (3,36),... 4.MD.2: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.

DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 2.ESS1.C; 2.ESS2.A; 5.ESS2.A

Standard Identifier: 4-ESS3-1

Grade: 4
Disciplinary Core Idea: ESS3.A: Natural Resources
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-8: Obtaining, Evaluating, and Communicating Information
Content Area: Earth and Space Science

Title: 4-ESS3 Earth and Human Activity

Performance Expectation: Obtain and combine information to describe that energy and fuels are derived from natural resources and that their uses affect the environment. [Clarification Statement: Examples of renewable energy resources could include wind energy, water behind dams, and sunlight; non-renewable energy resources are fossil fuels and fissile materials. Examples of environmental effects could include loss of habitat due to dams, loss of habitat due to surface mining, and air pollution from burning of fossil fuels.]

Disciplinary Core Idea(s):
ESS3.A: Natural Resources Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not.

Science & Engineering Practices: Obtaining, Evaluating, and Communicating Information Obtain and combine information from books and other reliable media to explain phenomena.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified and used to explain change. Connections to Engineering, Technology, and Applications of Science: Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering. Influence of Science, Engineering and Technology on Society and the Natural World Over time, people’s needs and wants change, as do their demands for new and improved technologies.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services.

California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. W.4.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.OA.1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.

DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: 5.ESS3.C; MS.PS3.D; MS.ESS2.A; MS.ESS3.A; MS.ESS3.C; MS.ESS3.D

Standard Identifier: 4-ESS3-2

Grade: 4
Disciplinary Core Idea: ESS3.B: Natural Hazards, ETS1.B: Developing Possible Solutions
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Earth and Space Science

Title: 4-ESS3 Earth and Human Activity

Performance Expectation: Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.* [Clarification Statement: Examples of solutions could include designing an earthquake resistant building and improving monitoring of volcanic activity.] [Assessment Boundary: Assessment is limited to earthquakes, floods, tsunamis, and volcanic eruptions.]

Disciplinary Core Idea(s):
ESS3.B: Natural Hazards A variety of hazards result from natural processes (e.g., earthquakes, tsunamis, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (Note: This Disciplinary Core Idea can also be found in 3.WC.) ETS1.B: Designing Solutions to Engineering Problems Testing a solution involves investigating how well it performs under a range of likely conditions. (secondary to 4-ESS3-2)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services.

California Common Core State Standards Connections:
ELA/Literacy RI.4.1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. RI.4.9: Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. 4.OA.1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.

DCI Connections:
Connections to other DCIs in fourth grade: 4.ETS1.C Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 2.ETS1.C; MS.ESS2.A; MS.ESS3.B; MS.ETS1.B

Standard Identifier: 4-PS3-4

Grade: 4
Disciplinary Core Idea: PS3.B: Conservation of Energy and Energy Transfer, PS3.D: Energy in Chemical Processes, ETS1.A: Defining and Delimiting Engineering Problems
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Physical Science

Title: 4-PS3 Energy

Performance Expectation: Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.* [Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound; and, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device.] [Assessment Boundary: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.]

Disciplinary Core Idea(s):
PS3.B: Conservation of Energy and Energy Transfer Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. PS3.D: Energy in Chemical Processes The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use. ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (secondary to 4-PS3-4)

Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas to solve design problems.

Crosscutting Concepts: Energy and Matter Energy can be transferred in various ways and between objects. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering and Technology on Society and the Natural World Engineers improve existing technologies or develop new ones. Connections to Nature of Science: Science is a Human Endeavor Most scientists and engineers work in teams. Science affects everyday life.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy W.4.7: Conduct short research projects that build knowledge through investigation of different aspects of a topic. W.4.8: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes, paraphrase, and categorize information, and provide a list of sources. Mathematics 4.OA.3: Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

DCI Connections:
Connections to other DCIs in fourth grade: N/A Articulation across grade-levels: K.ETS1.A; 2.ETS1.B; 5.PS3.D; 5.LS1.C; MS.PS3.A; MS.PS3.B; MS.ETS1.B; MS.ETS1.C

Standard Identifier: 5-PS1-4

Grade: 5
Disciplinary Core Idea: PS1.B: Chemical Reactions
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Physical Science

Title: 5-PS1 Matter and Its Interactions

Performance Expectation: Conduct an investigation to determine whether the mixing of two or more substances results in new substances. [Clarification statement: Examples of combinations that do not produce new substances could include sand and water. Examples of combinations that do produce new substances could include baking soda and vinegar or milk and vinegar.]

Disciplinary Core Idea(s):
PS1.B: Chemical Reactions When two or more different substances are mixed, a new substance with different properties may be formed.

Science & Engineering Practices: Planning and Carrying Out Investigations Conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered.

Crosscutting Concepts: Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.

California Environmental Principles and Concepts:
N/A

California Common Core State Standards Connections:
ELA/Literacy W.5.7: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. W.5.8: Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. W.5.9.a-b: Draw evidence from literary or informational texts to support analysis, reflection, and research.

DCI Connections:
Connections to other DCIs in fifth grade: N/A Articulation across grade-levels: 2.PS1.B; MS.PS1.A; MS.PS1.B

Standard Identifier: MS-ESS2-5

Grade Range: 6–8
Disciplinary Core Idea: ESS2.C: The Roles of Water in Earth's Surface Processes, ESS2.D: Weather and Climate
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-3: Planning and Carrying Out Investigations
Content Area: Earth and Space Science

Title: MS-ESS2 Earth’s Systems

Performance Expectation: Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions. [Clarification Statement: Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted within probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation).] [Assessment Boundary: Assessment does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations.]

Disciplinary Core Idea(s):
ESS2.C: The Roles of Water in Earth’s Surface Processes The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns. ESS2.D: Weather and Climate Because these patterns are so complex, weather can only be predicted probabilistically.

Science & Engineering Practices: Planning and Carrying Out Investigations Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of conditions.

Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems.

California Environmental Principles and Concepts:
Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. RST.6-8.9: Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. WHST.6-8.8: Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. Mathematics MP.2: Reason abstractly and quantitatively. 6.NS.5: Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS2.A; MS.PS3.A; MS.PS3.B Articulation across grade-bands: 3.ESS2.D; 5.ESS2.A; HS.ESS2.C; HS.ESS2.D

Standard Identifier: MS-ESS3-1

Grade Range: 6–8
Disciplinary Core Idea: ESS3.A: Natural Resources
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Earth and Space Science

Title: MS-ESS3 Earth and Human Activity

Performance Expectation: Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes. [Clarification Statement: Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock).]

Disciplinary Core Idea(s):
ESS3.A: Natural Resources Humans depend on Earth’s land, ocean, atmosphere, and biosphere for many different resources. Minerals, fresh water, and biosphere resources are limited, and many are not renewable or replaceable over human lifetimes. These resources are distributed unevenly around the planet as a result of past geologic processes.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.

Crosscutting Concepts: Cause and Effect Cause and effect relationships may be used to predict phenomena in natural or designed systems. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. WHST.6-8.2.a-f: Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. WHST.6-8.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. 7.EE.4.a-b: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

DCI Connections:
Connections to other DCIs in this grade-band: MS.PS1.A; MS.PS1.B; MS.ESS2.D Articulation across grade-bands: 4.PS3.D; 4.ESS3.A; HS.PS3.B; HS.LS1.C; HS.ESS2.A; HS.ESS2.B; HS.ESS2.C; HS.ESS3.A

Standard Identifier: MS-ESS3-3

Grade Range: 6–8
Disciplinary Core Idea: ESS3.C: Human Impacts on Earth Systems
Cross Cutting Concept: CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice: SEP-6: Constructing Explanations and Designing Solutions
Content Area: Earth and Space Science

Title: MS-ESS3 Earth and Human Activity

Performance Expectation: Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.* [Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).]

Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth’s environments can have different impacts (negative and positive) for different living things. Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.

Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific principles to design an object, tool, process or system.

Crosscutting Concepts: Cause and Effect Relationships can be classified as causal or correlational, and correlation does not necessarily imply causation. Connections to Engineering, Technology, and Applications of Science: Influence of Science, Engineering, and Technology on Society and the Natural World The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time.

California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies.

California Common Core State Standards Connections:
ELA/Literacy WHST.6-8.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. WHST.6–8.8: Gather relevant information from multiple print and digital sources (primary and secondary), using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. Mathematics 6.RP.1: Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 6.EE.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.

DCI Connections:
Connections to other DCIs in this grade-band: MS.LS2.A; MS.LS2.C ; MS.LS4.D Articulation across grade-bands: 3.LS2.C; 3.LS4.D; 5.ESS3.C; HS.LS2.C; HS.LS4.C; HS.LS4.D; HS.ESS2.C; HS.ESS2.D; HS.ESS2.E; HS.ESS3.C; HS.ESS3.D

Showing 11 - 20 of 37 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881