Computer Science Standards
Results
Showing 11 - 18 of 18 Standards
Standard Identifier: 9-12.IC.25
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Recognizing and Defining Computational Problems (3.1)
Standard:
Demonstrate ways a given algorithm applies to problems across disciplines.
Descriptive Statement:
Students identify how a given algorithm can be applied to real-world problems in different disciplines. For example, students could demonstrate how a randomization algorithm can be used to select participants for a clinical medical trial or to select a flash card to display on a vocabulary quiz. Alternatively, students could demonstrate how searching and sorting algorithms are needed to organize records in manufacturing settings, or to support doctors queries of patient records, or to help governments manage support services they provide to their citizens.
Demonstrate ways a given algorithm applies to problems across disciplines.
Descriptive Statement:
Students identify how a given algorithm can be applied to real-world problems in different disciplines. For example, students could demonstrate how a randomization algorithm can be used to select participants for a clinical medical trial or to select a flash card to display on a vocabulary quiz. Alternatively, students could demonstrate how searching and sorting algorithms are needed to organize records in manufacturing settings, or to support doctors queries of patient records, or to help governments manage support services they provide to their citizens.
Standard Identifier: 9-12.NI.7
Grade Range:
9–12
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.3, 4.4)
Standard:
Compare and contrast cryptographic techniques to model the secure transmission of information.
Descriptive Statement:
Cryptography is a technique for transforming information on a computer in such a way that it becomes unreadable by anyone except authorized parties. Cryptography is useful for supporting secure communication of data across networks. Examples of cryptographic methods include hashing, symmetric encryption/decryption (private key), and assymmetric encryption/decryption (public key/private key). Students use software to encode and decode messages using cryptographic methods. Students compare the costs and benefits of using various cryptographic methods. At this level, students are not expected to perform the mathematical calculations associated with encryption and decryption. For example, students could compare and contrast multiple examples of symmetric cryptographic techiques. Alternatively, students could compare and contrast symmetric and asymmetric cryptographic techniques in which they apply for a given scenario.
Compare and contrast cryptographic techniques to model the secure transmission of information.
Descriptive Statement:
Cryptography is a technique for transforming information on a computer in such a way that it becomes unreadable by anyone except authorized parties. Cryptography is useful for supporting secure communication of data across networks. Examples of cryptographic methods include hashing, symmetric encryption/decryption (private key), and assymmetric encryption/decryption (public key/private key). Students use software to encode and decode messages using cryptographic methods. Students compare the costs and benefits of using various cryptographic methods. At this level, students are not expected to perform the mathematical calculations associated with encryption and decryption. For example, students could compare and contrast multiple examples of symmetric cryptographic techiques. Alternatively, students could compare and contrast symmetric and asymmetric cryptographic techniques in which they apply for a given scenario.
Standard Identifier: 9-12S.AP.10
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Recognizing and Defining Computational Problems, Communicating About Computing (3.1, 7.2)
Standard:
Describe how artificial intelligence drives many software and physical systems.
Descriptive Statement:
Artificial intelligence is a sub-discipline of computer science that enables computers to solve problems previously handled by biological systems. There are many applications of artificial intelligence, including computer vision and speech recognition. Students research and explain how artificial intelligence has been employed in a given system. Students are not expected to implement an artificially intelligent system in order to meet this standard. For example, students could observe an artificially intelligent system and notice where its behavior is not human-like, such as when a character in a videogame makes a mistake that a human is unlikely to make, or when a computer easily beats even the best human players at a given game. Alternatively, students could interact with a search engine asking various questions, and after reading articles on the topic, they could explain how the computer is able to respond to queries.
Describe how artificial intelligence drives many software and physical systems.
Descriptive Statement:
Artificial intelligence is a sub-discipline of computer science that enables computers to solve problems previously handled by biological systems. There are many applications of artificial intelligence, including computer vision and speech recognition. Students research and explain how artificial intelligence has been employed in a given system. Students are not expected to implement an artificially intelligent system in order to meet this standard. For example, students could observe an artificially intelligent system and notice where its behavior is not human-like, such as when a character in a videogame makes a mistake that a human is unlikely to make, or when a computer easily beats even the best human players at a given game. Alternatively, students could interact with a search engine asking various questions, and after reading articles on the topic, they could explain how the computer is able to respond to queries.
Standard Identifier: 9-12S.AP.11
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Recognizing and Defining Computational Problems, Creating Computational Artifacts (3.1, 5.3)
Standard:
Implement an algorithm that uses artificial intelligence to overcome a simple challenge.
Descriptive Statement:
Artificial intelligence algorithms allow a computer to perceive and move in the world, use knowledge, and engage in problem solving. Students create a computational artifact that is able to carry out a simple task commonly performed by living organisms. Students do not need to realistically simulate human behavior or solve a complex problem in order to meet this standard. For example, students could implement an algorithm for playing tic-tac-toe that would select an appropriate location for the next move. Alternatively, students could implement an algorithm that allows a solar-powered robot to move to a sunny location when its batteries are low.
Implement an algorithm that uses artificial intelligence to overcome a simple challenge.
Descriptive Statement:
Artificial intelligence algorithms allow a computer to perceive and move in the world, use knowledge, and engage in problem solving. Students create a computational artifact that is able to carry out a simple task commonly performed by living organisms. Students do not need to realistically simulate human behavior or solve a complex problem in order to meet this standard. For example, students could implement an algorithm for playing tic-tac-toe that would select an appropriate location for the next move. Alternatively, students could implement an algorithm that allows a solar-powered robot to move to a sunny location when its batteries are low.
Standard Identifier: 9-12S.AP.13
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Recognizing and Defining Computational Problems (3.3)
Standard:
Evaluate algorithms in terms of their efficiency.
Descriptive Statement:
Algorithms that perform the same task can be implemented in different ways, which take different amounts of time to run on a given input set. Algorithms are commonly evaluated using asymptotic analysis (i.e., “Big O”) which involves exploration of behavior when the input set grows very large. Students classify algorithms by the most common time classes (e.g., log n, linear, n log n, and quadratic or higher). For example, students could read a given algorithm, identify the control constructs, and in conjunction with input size, identify the efficiency class of the algorithm.
Evaluate algorithms in terms of their efficiency.
Descriptive Statement:
Algorithms that perform the same task can be implemented in different ways, which take different amounts of time to run on a given input set. Algorithms are commonly evaluated using asymptotic analysis (i.e., “Big O”) which involves exploration of behavior when the input set grows very large. Students classify algorithms by the most common time classes (e.g., log n, linear, n log n, and quadratic or higher). For example, students could read a given algorithm, identify the control constructs, and in conjunction with input size, identify the efficiency class of the algorithm.
Standard Identifier: 9-12S.IC.27
Grade Range:
9–12 Specialty
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Fostering an Inclusive Computing Culture, Testing and Refining Computational Artifacts (1.2, 6.1)
Standard:
Evaluate computational artifacts with regard to improving their beneficial effects and reducing harmful effects on society.
Descriptive Statement:
People design computational artifacts to help make the lives of humans better. Students evaluate an artifact and comment on aspects of it which positively or negatively impact users and give ideas for reducing the possible negative impacts. For example, students could discuss how algorithms that screen job candidates' resumes can cut costs for companies (a beneficial effect) but introduce or amplify bias in the hiring process (a harmful effect). Alternatively, students could discuss how turn-by-turn navigation tools can help drivers avoid traffic and find alternate routes (a beneficial effect), but sometimes channel large amounts of traffic down small neighborhood streets (a harmful effect). Additionally, students could discuss how social media algorithms can help direct users' attention to interesting content (a beneficial effect), while simultaneously limiting users' exposure to information that contradicts pre-existing beliefs (a harmful effect).
Evaluate computational artifacts with regard to improving their beneficial effects and reducing harmful effects on society.
Descriptive Statement:
People design computational artifacts to help make the lives of humans better. Students evaluate an artifact and comment on aspects of it which positively or negatively impact users and give ideas for reducing the possible negative impacts. For example, students could discuss how algorithms that screen job candidates' resumes can cut costs for companies (a beneficial effect) but introduce or amplify bias in the hiring process (a harmful effect). Alternatively, students could discuss how turn-by-turn navigation tools can help drivers avoid traffic and find alternate routes (a beneficial effect), but sometimes channel large amounts of traffic down small neighborhood streets (a harmful effect). Additionally, students could discuss how social media algorithms can help direct users' attention to interesting content (a beneficial effect), while simultaneously limiting users' exposure to information that contradicts pre-existing beliefs (a harmful effect).
Standard Identifier: 9-12S.IC.29
Grade Range:
9–12 Specialty
Concept:
Impacts of Computing
Subconcept:
Culture
Practice(s):
Fostering an Inclusive Computing Culture (1.2)
Standard:
Evaluate the impact of equity, access, and influence on the distribution of computing resources in a global society.
Descriptive Statement:
Computers, computation, and technology can help improve the lives of humans and support positive developments in society, economy, and/or culture. However, access to such resources is not the same for everyone in the world. Students define and evaluate ways in which different technologies, applications, or computational tools might benefit all people in society or might only benefit those with the greatest access or resources. For example, students could describe ways in which groups of people benefit, do not benefit, or could benefit better by access to high-speed Internet connectivity. Alternatively, students could describe educational impacts of children not having access to a computer in their home.
Evaluate the impact of equity, access, and influence on the distribution of computing resources in a global society.
Descriptive Statement:
Computers, computation, and technology can help improve the lives of humans and support positive developments in society, economy, and/or culture. However, access to such resources is not the same for everyone in the world. Students define and evaluate ways in which different technologies, applications, or computational tools might benefit all people in society or might only benefit those with the greatest access or resources. For example, students could describe ways in which groups of people benefit, do not benefit, or could benefit better by access to high-speed Internet connectivity. Alternatively, students could describe educational impacts of children not having access to a computer in their home.
Standard Identifier: 9-12S.NI.6
Grade Range:
9–12 Specialty
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.3, 4.2)
Standard:
Analyze cryptographic techniques to model the secure transmission of information.
Descriptive Statement:
Cryptography is essential to many models of cybersecurity. Open standards help to ensure cryptographic security. Certificate Authorities (CAs) issue digital certificates that validate the ownership of encrypted keys used in secured communications across the Internet. Students encode and decode messages using encryption and decryption methods, and they should understand the different levels of complexity to hide or secure information. For example, students could analyze the relative designs of private key vs. public key encryption techniques and apply the best choice for a particular scenario. Alternatively, students could analyze the design of the Diffie-Helman algorithm to RSA (Rivest–Shamir–Adleman) and apply the best choice for a particular scenario. They could provide a cost-benefit analysis of runtime and ease of cracking for various encryption techniques which are commonly used to secure transmission of data over the Internet.
Analyze cryptographic techniques to model the secure transmission of information.
Descriptive Statement:
Cryptography is essential to many models of cybersecurity. Open standards help to ensure cryptographic security. Certificate Authorities (CAs) issue digital certificates that validate the ownership of encrypted keys used in secured communications across the Internet. Students encode and decode messages using encryption and decryption methods, and they should understand the different levels of complexity to hide or secure information. For example, students could analyze the relative designs of private key vs. public key encryption techniques and apply the best choice for a particular scenario. Alternatively, students could analyze the design of the Diffie-Helman algorithm to RSA (Rivest–Shamir–Adleman) and apply the best choice for a particular scenario. They could provide a cost-benefit analysis of runtime and ease of cracking for various encryption techniques which are commonly used to secure transmission of data over the Internet.
Showing 11 - 18 of 18 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881