Computer Science Standards
Remove this criterion from the search
Algorithms
Remove this criterion from the search
Collection, Visualization, & Transformation
Remove this criterion from the search
Control
Remove this criterion from the search
Cybersecurity
Remove this criterion from the search
Devices
Remove this criterion from the search
Hardware & Software
Remove this criterion from the search
Inference & Models
Remove this criterion from the search
Social Interactions
Results
Showing 31 - 40 of 49 Standards
Standard Identifier: 9-12.CS.1
Grade Range:
9–12
Concept:
Computing Systems
Subconcept:
Devices
Practice(s):
Developing and Using Abstractions (4.1)
Standard:
Describe ways in which abstractions hide the underlying implementation details of computing systems to simplify user experiences.
Descriptive Statement:
An abstraction is a representation of an idea or phenomenon that hides details irrelevant to the question at hand. Computing systems, both stand alone and embedded in products, are often integrated with other systems to simplify user experiences. For example, students could identify geolocation hardware embedded in a smartphone and describe how this simplifies the users experience since the user does not have to enter her own location on the phone. Alternatively, students might select an embedded device such as a car stereo, identify the types of data (e.g., radio station presets, volume level) and procedures (e.g., increase volume, store/recall saved station, mute) it includes, and explain how the implementation details are hidden from the user.
Describe ways in which abstractions hide the underlying implementation details of computing systems to simplify user experiences.
Descriptive Statement:
An abstraction is a representation of an idea or phenomenon that hides details irrelevant to the question at hand. Computing systems, both stand alone and embedded in products, are often integrated with other systems to simplify user experiences. For example, students could identify geolocation hardware embedded in a smartphone and describe how this simplifies the users experience since the user does not have to enter her own location on the phone. Alternatively, students might select an embedded device such as a car stereo, identify the types of data (e.g., radio station presets, volume level) and procedures (e.g., increase volume, store/recall saved station, mute) it includes, and explain how the implementation details are hidden from the user.
Standard Identifier: 9-12.CS.2
Grade Range:
9–12
Concept:
Computing Systems
Subconcept:
Hardware & Software
Practice(s):
Developing and Using Abstractions (4.1)
Standard:
Compare levels of abstraction and interactions between application software, system software, and hardware.
Descriptive Statement:
At its most basic level, a computer is composed of physical hardware on which software runs. Multiple layers of software are built upon various layers of hardware. Layers manage interactions and complexity in the computing system. System software manages a computing device's resources so that software can interact with hardware. Application software communicates with the user and the system software to accomplish its purpose. Students compare and describe how application software, system software, and hardware interact. For example, students could compare how various levels of hardware and software interact when a picture is to be taken on a smartphone. Systems software provides low-level commands to operate the camera hardware, but the application software interacts with system software at a higher level by requesting a common image file format (e.g., .png) that the system software provides.
Compare levels of abstraction and interactions between application software, system software, and hardware.
Descriptive Statement:
At its most basic level, a computer is composed of physical hardware on which software runs. Multiple layers of software are built upon various layers of hardware. Layers manage interactions and complexity in the computing system. System software manages a computing device's resources so that software can interact with hardware. Application software communicates with the user and the system software to accomplish its purpose. Students compare and describe how application software, system software, and hardware interact. For example, students could compare how various levels of hardware and software interact when a picture is to be taken on a smartphone. Systems software provides low-level commands to operate the camera hardware, but the application software interacts with system software at a higher level by requesting a common image file format (e.g., .png) that the system software provides.
Standard Identifier: 9-12.DA.10
Grade Range:
9–12
Concept:
Data & Analysis
Subconcept:
Collection, Visualization, & Transformation
Practice(s):
Creating Computational Artifacts (5.2)
Standard:
Create data visualizations to help others better understand real-world phenomena.
Descriptive Statement:
People transform, generalize, simplify, and present large data sets in different ways to influence how other people interpret and understand the underlying information. Students select relevant data from large or complex data sets in support of a claim or to communicate the information in a more sophisticated manner. Students use software tools or programming to perform a range of mathematical operations to transform and analyze data and create powerful data visualizations (that reveal patterns in the data). For example, students could create data visualizations to reveal patterns in voting data by state, gender, political affiliation, or socioeconomic status. Alternatively, students could use U.S. government data on criticially endangered animals to visualize population change over time.
Create data visualizations to help others better understand real-world phenomena.
Descriptive Statement:
People transform, generalize, simplify, and present large data sets in different ways to influence how other people interpret and understand the underlying information. Students select relevant data from large or complex data sets in support of a claim or to communicate the information in a more sophisticated manner. Students use software tools or programming to perform a range of mathematical operations to transform and analyze data and create powerful data visualizations (that reveal patterns in the data). For example, students could create data visualizations to reveal patterns in voting data by state, gender, political affiliation, or socioeconomic status. Alternatively, students could use U.S. government data on criticially endangered animals to visualize population change over time.
Standard Identifier: 9-12.DA.11
Grade Range:
9–12
Concept:
Data & Analysis
Subconcept:
Inference & Models
Practice(s):
Developing and Using Abstractions, Testing and Refining Computational Artifacts (4.4, 6.3)
Standard:
Refine computational models to better represent the relationships among different elements of data collected from a phenomenon or process.
Descriptive Statement:
Computational models are used to make predictions about processes or phenomena based on selected data and features. They allow people to investigate the relationships among different variables to understand a system. Predictions are tested to validate models. Students evaluate these models against real-world observations. For example, students could use a population model that allows them to speculate about interactions among different species, evaluate the model based on data gathered from nature, and then refine the model to reflect more complex and realistic interactions.
Refine computational models to better represent the relationships among different elements of data collected from a phenomenon or process.
Descriptive Statement:
Computational models are used to make predictions about processes or phenomena based on selected data and features. They allow people to investigate the relationships among different variables to understand a system. Predictions are tested to validate models. Students evaluate these models against real-world observations. For example, students could use a population model that allows them to speculate about interactions among different species, evaluate the model based on data gathered from nature, and then refine the model to reflect more complex and realistic interactions.
Standard Identifier: 9-12.IC.27
Grade Range:
9–12
Concept:
Impacts of Computing
Subconcept:
Social Interactions
Practice(s):
Collaborating Around Computing (2.4)
Standard:
Use collaboration tools and methods to increase connectivity with people of different cultures and careers.
Descriptive Statement:
Increased digital connectivity and communication between people across a variety of cultures and in differing professions has changed the collaborative nature of personal and professional interaction. Students identify, explain, and use appropriate collaborative tools. For example, students could compare ways that various technological collaboration tools could help a team become more cohesive and then choose one of these tools to manage their teamwork. Alternatively, students could use different collaborative tools and methods to solicit input from not only team members and classmates but also others, such as participants in online forums or local communities.
Use collaboration tools and methods to increase connectivity with people of different cultures and careers.
Descriptive Statement:
Increased digital connectivity and communication between people across a variety of cultures and in differing professions has changed the collaborative nature of personal and professional interaction. Students identify, explain, and use appropriate collaborative tools. For example, students could compare ways that various technological collaboration tools could help a team become more cohesive and then choose one of these tools to manage their teamwork. Alternatively, students could use different collaborative tools and methods to solicit input from not only team members and classmates but also others, such as participants in online forums or local communities.
Standard Identifier: 9-12.NI.6
Grade Range:
9–12
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Communicating About Computing (7.2)
Standard:
Compare and contrast security measures to address various security threats.
Descriptive Statement:
Network security depends on a combination of hardware, software, and practices that control access to data and systems. The needs of users and the sensitivity of data determine the level of security implemented. Potential security problems, such as denial-of-service attacks, ransomware, viruses, worms, spyware, and phishing, present threats to sensitive data. Students compare and contrast different types of security measures based on factors such as efficiency, feasibility, ethical impacts, usability, and security. At this level, students are not expected to develop or implement the security measures that they discuss. For example, students could review case studies or current events in which governments or organizations experienced data leaks or data loss as a result of these types of attacks. Students could provide an analysis of actual security measures taken comparing to other security measure which may have led to different outcomes. Alternatively, students might discuss computer security policies in place at the local level that present a tradeoff between usability and security, such as a web filter that prevents access to many educational sites but keeps the campus network safe.
Compare and contrast security measures to address various security threats.
Descriptive Statement:
Network security depends on a combination of hardware, software, and practices that control access to data and systems. The needs of users and the sensitivity of data determine the level of security implemented. Potential security problems, such as denial-of-service attacks, ransomware, viruses, worms, spyware, and phishing, present threats to sensitive data. Students compare and contrast different types of security measures based on factors such as efficiency, feasibility, ethical impacts, usability, and security. At this level, students are not expected to develop or implement the security measures that they discuss. For example, students could review case studies or current events in which governments or organizations experienced data leaks or data loss as a result of these types of attacks. Students could provide an analysis of actual security measures taken comparing to other security measure which may have led to different outcomes. Alternatively, students might discuss computer security policies in place at the local level that present a tradeoff between usability and security, such as a web filter that prevents access to many educational sites but keeps the campus network safe.
Standard Identifier: 9-12.NI.7
Grade Range:
9–12
Concept:
Networks & the Internet
Subconcept:
Cybersecurity
Practice(s):
Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.3, 4.4)
Standard:
Compare and contrast cryptographic techniques to model the secure transmission of information.
Descriptive Statement:
Cryptography is a technique for transforming information on a computer in such a way that it becomes unreadable by anyone except authorized parties. Cryptography is useful for supporting secure communication of data across networks. Examples of cryptographic methods include hashing, symmetric encryption/decryption (private key), and assymmetric encryption/decryption (public key/private key). Students use software to encode and decode messages using cryptographic methods. Students compare the costs and benefits of using various cryptographic methods. At this level, students are not expected to perform the mathematical calculations associated with encryption and decryption. For example, students could compare and contrast multiple examples of symmetric cryptographic techiques. Alternatively, students could compare and contrast symmetric and asymmetric cryptographic techniques in which they apply for a given scenario.
Compare and contrast cryptographic techniques to model the secure transmission of information.
Descriptive Statement:
Cryptography is a technique for transforming information on a computer in such a way that it becomes unreadable by anyone except authorized parties. Cryptography is useful for supporting secure communication of data across networks. Examples of cryptographic methods include hashing, symmetric encryption/decryption (private key), and assymmetric encryption/decryption (public key/private key). Students use software to encode and decode messages using cryptographic methods. Students compare the costs and benefits of using various cryptographic methods. At this level, students are not expected to perform the mathematical calculations associated with encryption and decryption. For example, students could compare and contrast multiple examples of symmetric cryptographic techiques. Alternatively, students could compare and contrast symmetric and asymmetric cryptographic techniques in which they apply for a given scenario.
Standard Identifier: 9-12S.AP.10
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Recognizing and Defining Computational Problems, Communicating About Computing (3.1, 7.2)
Standard:
Describe how artificial intelligence drives many software and physical systems.
Descriptive Statement:
Artificial intelligence is a sub-discipline of computer science that enables computers to solve problems previously handled by biological systems. There are many applications of artificial intelligence, including computer vision and speech recognition. Students research and explain how artificial intelligence has been employed in a given system. Students are not expected to implement an artificially intelligent system in order to meet this standard. For example, students could observe an artificially intelligent system and notice where its behavior is not human-like, such as when a character in a videogame makes a mistake that a human is unlikely to make, or when a computer easily beats even the best human players at a given game. Alternatively, students could interact with a search engine asking various questions, and after reading articles on the topic, they could explain how the computer is able to respond to queries.
Describe how artificial intelligence drives many software and physical systems.
Descriptive Statement:
Artificial intelligence is a sub-discipline of computer science that enables computers to solve problems previously handled by biological systems. There are many applications of artificial intelligence, including computer vision and speech recognition. Students research and explain how artificial intelligence has been employed in a given system. Students are not expected to implement an artificially intelligent system in order to meet this standard. For example, students could observe an artificially intelligent system and notice where its behavior is not human-like, such as when a character in a videogame makes a mistake that a human is unlikely to make, or when a computer easily beats even the best human players at a given game. Alternatively, students could interact with a search engine asking various questions, and after reading articles on the topic, they could explain how the computer is able to respond to queries.
Standard Identifier: 9-12S.AP.11
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Recognizing and Defining Computational Problems, Creating Computational Artifacts (3.1, 5.3)
Standard:
Implement an algorithm that uses artificial intelligence to overcome a simple challenge.
Descriptive Statement:
Artificial intelligence algorithms allow a computer to perceive and move in the world, use knowledge, and engage in problem solving. Students create a computational artifact that is able to carry out a simple task commonly performed by living organisms. Students do not need to realistically simulate human behavior or solve a complex problem in order to meet this standard. For example, students could implement an algorithm for playing tic-tac-toe that would select an appropriate location for the next move. Alternatively, students could implement an algorithm that allows a solar-powered robot to move to a sunny location when its batteries are low.
Implement an algorithm that uses artificial intelligence to overcome a simple challenge.
Descriptive Statement:
Artificial intelligence algorithms allow a computer to perceive and move in the world, use knowledge, and engage in problem solving. Students create a computational artifact that is able to carry out a simple task commonly performed by living organisms. Students do not need to realistically simulate human behavior or solve a complex problem in order to meet this standard. For example, students could implement an algorithm for playing tic-tac-toe that would select an appropriate location for the next move. Alternatively, students could implement an algorithm that allows a solar-powered robot to move to a sunny location when its batteries are low.
Standard Identifier: 9-12S.AP.12
Grade Range:
9–12 Specialty
Concept:
Algorithms & Programming
Subconcept:
Algorithms
Practice(s):
Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.2)
Standard:
Implement searching and sorting algorithms to solve computational problems.
Descriptive Statement:
One of the core uses of computers is to store, organize, and retrieve information when working with large amounts of data. Students create computational artifacts that use searching and/or sorting algorithms to retrieve, organize, or store information. Students do not need to select their algorithm based on efficiency. For example, students could write a script to sequence their classmates in order from youngest to oldest. Alternatively, students could write a program to find certain words within a text and report their location.
Implement searching and sorting algorithms to solve computational problems.
Descriptive Statement:
One of the core uses of computers is to store, organize, and retrieve information when working with large amounts of data. Students create computational artifacts that use searching and/or sorting algorithms to retrieve, organize, or store information. Students do not need to select their algorithm based on efficiency. For example, students could write a script to sequence their classmates in order from youngest to oldest. Alternatively, students could write a program to find certain words within a text and report their location.
Showing 31 - 40 of 49 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881