Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 11 - 20 of 26 Standards

Standard Identifier: 6-8.DA.9

Grade Range: 6–8
Concept: Data & Analysis
Subconcept: Inference & Models
Practice(s): Developing and Using Abstractions, Testing and Refining Computational Artifacts (4.4, 6.1)

Standard:
Test and analyze the effects of changing variables while using computational models.

Descriptive Statement:
Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results. For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of track, size and mass of the robot) and discussing how these changes affect how far the robot travels. (CA NGSS: MS-PS2-2) Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and analyze how these changes affect who wins the game. (CA NGSS: MS-ETS1-3) Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects of changing variables representing the common color ratios in a typical bag of candy. (CA CCSS for Mathematics 7.SP.7, 8.SP.4)

Standard Identifier: 6-8.NI.4

Grade Range: 6–8
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Developing and Using Abstractions (4.4)

Standard:
Model the role of protocols in transmitting data across networks and the Internet.

Descriptive Statement:
Protocols are rules that define how messages between computers are sent. They determine how quickly and securely information is transmitted across networks, as well as how to handle errors in transmission. Students model how data is sent using protocols to choose the fastest path and to deal with missing information. Knowledge of the details of how specific protocols work is not expected. The priority at this grade level is understanding the purpose of protocols and how they enable efficient and errorless communication. For example, students could devise a plan for sending data representing a textual message and devise a plan for resending lost information. Alternatively, students could devise a plan for sending data to represent a picture, and devise a plan for interpreting the image when pieces of the data are missing. Additionally, students could model the speed of sending messages by Bluetooth, Wi-Fi, or cellular networks and describe ways errors in data transmission can be detected and dealt with.

Standard Identifier: 9-12.AP.12

Grade Range: 9–12
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.1)

Standard:
Design algorithms to solve computational problems using a combination of original and existing algorithms.

Descriptive Statement:
Knowledge of common algorithms improves how people develop software, secure data, and store information. Some algorithms may be easier to implement in a particular programming language, work faster, require less memory to store data, and be applicable in a wider variety of situations than other algorithms. Algorithms used to search and sort data are common in a variety of software applications. For example, students could design an algorithm to calculate and display various sports statistics and use common sorting or mathematical algorithms (e.g., average) in the design of the overall algorithm. Alternatively, students could design an algorithm to implement a game and use existing randomization algorithms to place pieces randomly in starting positions or to control the "roll" of a dice or selection of a "card" from a deck.

Standard Identifier: 9-12.DA.10

Grade Range: 9–12
Concept: Data & Analysis
Subconcept: Collection, Visualization, & Transformation
Practice(s): Creating Computational Artifacts (5.2)

Standard:
Create data visualizations to help others better understand real-world phenomena.

Descriptive Statement:
People transform, generalize, simplify, and present large data sets in different ways to influence how other people interpret and understand the underlying information. Students select relevant data from large or complex data sets in support of a claim or to communicate the information in a more sophisticated manner. Students use software tools or programming to perform a range of mathematical operations to transform and analyze data and create powerful data visualizations (that reveal patterns in the data). For example, students could create data visualizations to reveal patterns in voting data by state, gender, political affiliation, or socioeconomic status. Alternatively, students could use U.S. government data on criticially endangered animals to visualize population change over time.

Standard Identifier: 9-12.DA.11

Grade Range: 9–12
Concept: Data & Analysis
Subconcept: Inference & Models
Practice(s): Developing and Using Abstractions, Testing and Refining Computational Artifacts (4.4, 6.3)

Standard:
Refine computational models to better represent the relationships among different elements of data collected from a phenomenon or process.

Descriptive Statement:
Computational models are used to make predictions about processes or phenomena based on selected data and features. They allow people to investigate the relationships among different variables to understand a system. Predictions are tested to validate models. Students evaluate these models against real-world observations. For example, students could use a population model that allows them to speculate about interactions among different species, evaluate the model based on data gathered from nature, and then refine the model to reflect more complex and realistic interactions.

Standard Identifier: 9-12.NI.4

Grade Range: 9–12
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Describe issues that impact network functionality.

Descriptive Statement:
Many different organizations, including educational, governmental, private businesses, and private households rely on networks to function adequately in order to engage in online commerce and activity. Quality of Service (QoS) refers to the capability of a network to provide better service to selected network traffic over various technologies from the perspective of the consumer. Students define and discuss performance measures that impact network functionality, such as latency, bandwidth, throughput, jitter, and error rate. For example, students could use online network simulators to explore how performance measures impact network functionality and describe impacts when various changes in the network occur. Alternatively, students could describe how pauses in television interviews conducted over satellite telephones are impacted by networking factors such as latency and jitter.

Standard Identifier: 9-12.NI.5

Grade Range: 9–12
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Communicating About Computing (7.2)

Standard:
Describe the design characteristics of the Internet.

Descriptive Statement:
The Internet connects devices and networks all over the world. Large-scale coordination occurs among many different machines across multiple paths every time a web page is opened or an image is viewed online. Through the domain name system (DNS), devices on the Internet can look up Internet Protocol (IP) addresses, allowing end-to-end communication between devices. The design decisions that direct the coordination among systems composing the Internet also allow for scalability and reliability. Students factor historical, cultural, and economic decisions in their explanations of the Internet. For example, students could explain how hierarchy in the DNS supports scalability and reliability. Alternatively, students could describe how the redundancy of routing between two nodes on the Internet increases reliability and scales as the Internet grows.

Standard Identifier: 9-12S.AP.10

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Recognizing and Defining Computational Problems, Communicating About Computing (3.1, 7.2)

Standard:
Describe how artificial intelligence drives many software and physical systems.

Descriptive Statement:
Artificial intelligence is a sub-discipline of computer science that enables computers to solve problems previously handled by biological systems. There are many applications of artificial intelligence, including computer vision and speech recognition. Students research and explain how artificial intelligence has been employed in a given system. Students are not expected to implement an artificially intelligent system in order to meet this standard. For example, students could observe an artificially intelligent system and notice where its behavior is not human-like, such as when a character in a videogame makes a mistake that a human is unlikely to make, or when a computer easily beats even the best human players at a given game. Alternatively, students could interact with a search engine asking various questions, and after reading articles on the topic, they could explain how the computer is able to respond to queries.

Standard Identifier: 9-12S.AP.11

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Recognizing and Defining Computational Problems, Creating Computational Artifacts (3.1, 5.3)

Standard:
Implement an algorithm that uses artificial intelligence to overcome a simple challenge.

Descriptive Statement:
Artificial intelligence algorithms allow a computer to perceive and move in the world, use knowledge, and engage in problem solving. Students create a computational artifact that is able to carry out a simple task commonly performed by living organisms. Students do not need to realistically simulate human behavior or solve a complex problem in order to meet this standard. For example, students could implement an algorithm for playing tic-tac-toe that would select an appropriate location for the next move. Alternatively, students could implement an algorithm that allows a solar-powered robot to move to a sunny location when its batteries are low.

Standard Identifier: 9-12S.AP.12

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.2)

Standard:
Implement searching and sorting algorithms to solve computational problems.

Descriptive Statement:
One of the core uses of computers is to store, organize, and retrieve information when working with large amounts of data. Students create computational artifacts that use searching and/or sorting algorithms to retrieve, organize, or store information. Students do not need to select their algorithm based on efficiency. For example, students could write a script to sequence their classmates in order from youngest to oldest. Alternatively, students could write a program to find certain words within a text and report their location.

Showing 11 - 20 of 26 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881