Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 51 - 60 of 78 Standards

Standard Identifier: 9-12.DA.8

Grade Range: 9–12
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Translate between different representations of data abstractions of real-world phenomena, such as characters, numbers, and images.

Descriptive Statement:
Computers represent complex real-world concepts such as characters, numbers, and images through various abstractions. Students translate between these different levels of data representations. For example, students could convert an HTML (Hyper Text Markup Language) tag for red font into RGB (Red Green Blue), HEX (Hexadecimal Color Code), HSL (Hue Saturation Lightness), RGBA( Red Green Blue Alpha), or HSLA (Hue Saturation Lightness and Alpha) representations. Alternatively, students could convert the standard representation of a character such as ! into ASCII or Unicode.

Standard Identifier: 9-12.DA.9

Grade Range: 9–12
Concept: Data & Analysis
Subconcept: Storage
Practice(s): Recognizing and Defining Computational Problems (3.3)

Standard:
Describe tradeoffs associated with how data elements are organized and stored.

Descriptive Statement:
People make choices about how data elements are organized and where data is stored. These choices affect cost, speed, reliability, accessibility, privacy, and integrity. Students describe implications for a given data organziation or storage choice in light of a specific problem. For example, students might consider the cost, speed, reliability, accessibility, privacy, and integrity tradeoffs between storing photo data on a mobile device versus in the cloud. Alternatively, students might compare the tradeoffs between file size and image quality of various image file formats and how choice of format may be infuenced by the device on which it is to be accessed (e.g., smartphone, computer).

Standard Identifier: 9-12.IC.23

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Fostering an Inclusive Computing Culture, Recognizing and Defining Computational Problems (1.2, 3.1)

Standard:
Evaluate the ways computing impacts personal, ethical, social, economic, and cultural practices.

Descriptive Statement:
Computing may improve, harm, or maintain practices. An understanding of how equity deficits, such as minimal exposure to computing, access to education, and training opportunities, are related to larger, systemic problems in society enables students to create more meaningful artifacts. Students illustrate the positive, negative, and/or neutral impacts of computing. For example, students could evaluate the accessibility of a product for a broad group of end users, such as people who lack access to broadband or who have various disabilities. Students could identify potential bias during the design process and evaluate approaches to maximize accessibility in product design. Alternatively, students could evaluate the impact of social media on cultural, economic, and social practices around the world.

Standard Identifier: 9-12.IC.25

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Culture
Practice(s): Recognizing and Defining Computational Problems (3.1)

Standard:
Demonstrate ways a given algorithm applies to problems across disciplines.

Descriptive Statement:
Students identify how a given algorithm can be applied to real-world problems in different disciplines. For example, students could demonstrate how a randomization algorithm can be used to select participants for a clinical medical trial or to select a flash card to display on a vocabulary quiz. Alternatively, students could demonstrate how searching and sorting algorithms are needed to organize records in manufacturing settings, or to support doctors queries of patient records, or to help governments manage support services they provide to their citizens.

Standard Identifier: 9-12.IC.27

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Social Interactions
Practice(s): Collaborating Around Computing (2.4)

Standard:
Use collaboration tools and methods to increase connectivity with people of different cultures and careers.

Descriptive Statement:
Increased digital connectivity and communication between people across a variety of cultures and in differing professions has changed the collaborative nature of personal and professional interaction. Students identify, explain, and use appropriate collaborative tools. For example, students could compare ways that various technological collaboration tools could help a team become more cohesive and then choose one of these tools to manage their teamwork. Alternatively, students could use different collaborative tools and methods to solicit input from not only team members and classmates but also others, such as participants in online forums or local communities.

Standard Identifier: 9-12.NI.4

Grade Range: 9–12
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Describe issues that impact network functionality.

Descriptive Statement:
Many different organizations, including educational, governmental, private businesses, and private households rely on networks to function adequately in order to engage in online commerce and activity. Quality of Service (QoS) refers to the capability of a network to provide better service to selected network traffic over various technologies from the perspective of the consumer. Students define and discuss performance measures that impact network functionality, such as latency, bandwidth, throughput, jitter, and error rate. For example, students could use online network simulators to explore how performance measures impact network functionality and describe impacts when various changes in the network occur. Alternatively, students could describe how pauses in television interviews conducted over satellite telephones are impacted by networking factors such as latency and jitter.

Standard Identifier: 9-12.NI.7

Grade Range: 9–12
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.3, 4.4)

Standard:
Compare and contrast cryptographic techniques to model the secure transmission of information.

Descriptive Statement:
Cryptography is a technique for transforming information on a computer in such a way that it becomes unreadable by anyone except authorized parties. Cryptography is useful for supporting secure communication of data across networks. Examples of cryptographic methods include hashing, symmetric encryption/decryption (private key), and assymmetric encryption/decryption (public key/private key). Students use software to encode and decode messages using cryptographic methods. Students compare the costs and benefits of using various cryptographic methods. At this level, students are not expected to perform the mathematical calculations associated with encryption and decryption. For example, students could compare and contrast multiple examples of symmetric cryptographic techiques. Alternatively, students could compare and contrast symmetric and asymmetric cryptographic techniques in which they apply for a given scenario.

Standard Identifier: 9-12S.AP.10

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Recognizing and Defining Computational Problems, Communicating About Computing (3.1, 7.2)

Standard:
Describe how artificial intelligence drives many software and physical systems.

Descriptive Statement:
Artificial intelligence is a sub-discipline of computer science that enables computers to solve problems previously handled by biological systems. There are many applications of artificial intelligence, including computer vision and speech recognition. Students research and explain how artificial intelligence has been employed in a given system. Students are not expected to implement an artificially intelligent system in order to meet this standard. For example, students could observe an artificially intelligent system and notice where its behavior is not human-like, such as when a character in a videogame makes a mistake that a human is unlikely to make, or when a computer easily beats even the best human players at a given game. Alternatively, students could interact with a search engine asking various questions, and after reading articles on the topic, they could explain how the computer is able to respond to queries.

Standard Identifier: 9-12S.AP.11

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Recognizing and Defining Computational Problems, Creating Computational Artifacts (3.1, 5.3)

Standard:
Implement an algorithm that uses artificial intelligence to overcome a simple challenge.

Descriptive Statement:
Artificial intelligence algorithms allow a computer to perceive and move in the world, use knowledge, and engage in problem solving. Students create a computational artifact that is able to carry out a simple task commonly performed by living organisms. Students do not need to realistically simulate human behavior or solve a complex problem in order to meet this standard. For example, students could implement an algorithm for playing tic-tac-toe that would select an appropriate location for the next move. Alternatively, students could implement an algorithm that allows a solar-powered robot to move to a sunny location when its batteries are low.

Standard Identifier: 9-12S.AP.12

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.2)

Standard:
Implement searching and sorting algorithms to solve computational problems.

Descriptive Statement:
One of the core uses of computers is to store, organize, and retrieve information when working with large amounts of data. Students create computational artifacts that use searching and/or sorting algorithms to retrieve, organize, or store information. Students do not need to select their algorithm based on efficiency. For example, students could write a script to sequence their classmates in order from youngest to oldest. Alternatively, students could write a program to find certain words within a text and report their location.

Showing 51 - 60 of 78 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881