Skip to main content
California Department of Education Logo

Computer Science Standards




Results


Showing 91 - 100 of 127 Standards

Standard Identifier: 9-12.IC.28

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Safety, Law, & Ethics
Practice(s): Communicating About Computing (7.3)

Standard:
Explain the beneficial and harmful effects that intellectual property laws can have on innovation.

Descriptive Statement:
Laws and ethics govern aspects of computing such as privacy, data, property, information, and identity. Students explain the beneficial and harmful effects of intellectual property laws as they relate to potential innovations and governance. For example, students could explain how patents protect inventions but may limit innovation. Alternatively, students could explain how intellectual property laws requiring that artists be paid for use of their media might limit the choice of songs developers can use in their computational artifacts.

Standard Identifier: 9-12.IC.29

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Safety, Law, & Ethics
Practice(s): Communicating About Computing (7.2)

Standard:
Explain the privacy concerns related to the collection and generation of data through automated processes.

Descriptive Statement:
Data can be collected and aggregated across millions of people, even when they are not actively engaging with or physically near the data collection devices. Students recognize automated and non-evident collection of information and the privacy concerns they raise for individuals. For example, students could explain the impact on an individual when a social media site's security settings allows for mining of account information even when the user is not online. Alternatively, students could discuss the impact on individuals of using surveillance video in a store to track customers. Additionally, students could discuss how road traffic can be monitored to change signals in real time to improve road efficiency without drivers being aware and discuss policies for retaining data that identifies drivers' cars and their behaviors.

Standard Identifier: 9-12.IC.30

Grade Range: 9–12
Concept: Impacts of Computing
Subconcept: Safety, Law, & Ethics
Practice(s): Communicating About Computing (7.2)

Standard:
Evaluate the social and economic implications of privacy in the context of safety, law, or ethics.

Descriptive Statement:
Laws govern many aspects of computing, such as privacy, data, property, information, and identity. International differences in laws and ethics have implications for computing. Students make and justify claims about potential and/or actual privacy implications of policies, laws, or ethics and consider the associated tradeoffs, focusing on society and the economy. For example, students could explore the case of companies tracking online shopping behaviors in order to decide which products to target to consumers. Students could evaluate the ethical and legal dilemmas of collecting such data without consumer knowledge in order to profit companies. Alternatively, students could evaluate the implications of net neutrality laws on society's access to information and on the impacts to businesses of varying sizes.

Standard Identifier: 9-12.NI.4

Grade Range: 9–12
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Developing and Using Abstractions (4.1)

Standard:
Describe issues that impact network functionality.

Descriptive Statement:
Many different organizations, including educational, governmental, private businesses, and private households rely on networks to function adequately in order to engage in online commerce and activity. Quality of Service (QoS) refers to the capability of a network to provide better service to selected network traffic over various technologies from the perspective of the consumer. Students define and discuss performance measures that impact network functionality, such as latency, bandwidth, throughput, jitter, and error rate. For example, students could use online network simulators to explore how performance measures impact network functionality and describe impacts when various changes in the network occur. Alternatively, students could describe how pauses in television interviews conducted over satellite telephones are impacted by networking factors such as latency and jitter.

Standard Identifier: 9-12.NI.5

Grade Range: 9–12
Concept: Networks & the Internet
Subconcept: Network Communication & Organization
Practice(s): Communicating About Computing (7.2)

Standard:
Describe the design characteristics of the Internet.

Descriptive Statement:
The Internet connects devices and networks all over the world. Large-scale coordination occurs among many different machines across multiple paths every time a web page is opened or an image is viewed online. Through the domain name system (DNS), devices on the Internet can look up Internet Protocol (IP) addresses, allowing end-to-end communication between devices. The design decisions that direct the coordination among systems composing the Internet also allow for scalability and reliability. Students factor historical, cultural, and economic decisions in their explanations of the Internet. For example, students could explain how hierarchy in the DNS supports scalability and reliability. Alternatively, students could describe how the redundancy of routing between two nodes on the Internet increases reliability and scales as the Internet grows.

Standard Identifier: 9-12.NI.6

Grade Range: 9–12
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Communicating About Computing (7.2)

Standard:
Compare and contrast security measures to address various security threats.

Descriptive Statement:
Network security depends on a combination of hardware, software, and practices that control access to data and systems. The needs of users and the sensitivity of data determine the level of security implemented. Potential security problems, such as denial-of-service attacks, ransomware, viruses, worms, spyware, and phishing, present threats to sensitive data. Students compare and contrast different types of security measures based on factors such as efficiency, feasibility, ethical impacts, usability, and security. At this level, students are not expected to develop or implement the security measures that they discuss. For example, students could review case studies or current events in which governments or organizations experienced data leaks or data loss as a result of these types of attacks. Students could provide an analysis of actual security measures taken comparing to other security measure which may have led to different outcomes. Alternatively, students might discuss computer security policies in place at the local level that present a tradeoff between usability and security, such as a web filter that prevents access to many educational sites but keeps the campus network safe.

Standard Identifier: 9-12.NI.7

Grade Range: 9–12
Concept: Networks & the Internet
Subconcept: Cybersecurity
Practice(s): Recognizing and Defining Computational Problems, Developing and Using Abstractions (3.3, 4.4)

Standard:
Compare and contrast cryptographic techniques to model the secure transmission of information.

Descriptive Statement:
Cryptography is a technique for transforming information on a computer in such a way that it becomes unreadable by anyone except authorized parties. Cryptography is useful for supporting secure communication of data across networks. Examples of cryptographic methods include hashing, symmetric encryption/decryption (private key), and assymmetric encryption/decryption (public key/private key). Students use software to encode and decode messages using cryptographic methods. Students compare the costs and benefits of using various cryptographic methods. At this level, students are not expected to perform the mathematical calculations associated with encryption and decryption. For example, students could compare and contrast multiple examples of symmetric cryptographic techiques. Alternatively, students could compare and contrast symmetric and asymmetric cryptographic techniques in which they apply for a given scenario.

Standard Identifier: 9-12S.AP.10

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Recognizing and Defining Computational Problems, Communicating About Computing (3.1, 7.2)

Standard:
Describe how artificial intelligence drives many software and physical systems.

Descriptive Statement:
Artificial intelligence is a sub-discipline of computer science that enables computers to solve problems previously handled by biological systems. There are many applications of artificial intelligence, including computer vision and speech recognition. Students research and explain how artificial intelligence has been employed in a given system. Students are not expected to implement an artificially intelligent system in order to meet this standard. For example, students could observe an artificially intelligent system and notice where its behavior is not human-like, such as when a character in a videogame makes a mistake that a human is unlikely to make, or when a computer easily beats even the best human players at a given game. Alternatively, students could interact with a search engine asking various questions, and after reading articles on the topic, they could explain how the computer is able to respond to queries.

Standard Identifier: 9-12S.AP.11

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Recognizing and Defining Computational Problems, Creating Computational Artifacts (3.1, 5.3)

Standard:
Implement an algorithm that uses artificial intelligence to overcome a simple challenge.

Descriptive Statement:
Artificial intelligence algorithms allow a computer to perceive and move in the world, use knowledge, and engage in problem solving. Students create a computational artifact that is able to carry out a simple task commonly performed by living organisms. Students do not need to realistically simulate human behavior or solve a complex problem in order to meet this standard. For example, students could implement an algorithm for playing tic-tac-toe that would select an appropriate location for the next move. Alternatively, students could implement an algorithm that allows a solar-powered robot to move to a sunny location when its batteries are low.

Standard Identifier: 9-12S.AP.12

Grade Range: 9–12 Specialty
Concept: Algorithms & Programming
Subconcept: Algorithms
Practice(s): Developing and Using Abstractions, Creating Computational Artifacts (4.2, 5.2)

Standard:
Implement searching and sorting algorithms to solve computational problems.

Descriptive Statement:
One of the core uses of computers is to store, organize, and retrieve information when working with large amounts of data. Students create computational artifacts that use searching and/or sorting algorithms to retrieve, organize, or store information. Students do not need to select their algorithm based on efficiency. For example, students could write a script to sequence their classmates in order from youngest to oldest. Alternatively, students could write a program to find certain words within a text and report their location.

Showing 91 - 100 of 127 Standards


Questions: Curriculum Frameworks and Instructional Resources Division | CFIRD@cde.ca.gov | 916-319-0881