Mathematics Standards
Results
Showing 61 - 70 of 91 Standards
Standard Identifier: S-CP.7
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. *
Standard Identifier: S-CP.7
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Math II
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. *
Standard Identifier: S-CP.8
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Math II
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model. *
Standard Identifier: S-CP.8
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model. *
Standard Identifier: S-CP.9
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Geometry
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Use permutations and combinations to compute probabilities of compound events and solve problems. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Use permutations and combinations to compute probabilities of compound events and solve problems. *
Standard Identifier: S-CP.9
Grade Range:
8–12
Domain:
Conditional Probability and the Rules of Probability
Discipline:
Math II
Conceptual Category:
Statistics and Probability
Cluster:
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Use permutations and combinations to compute probabilities of compound events and solve problems. *
Use the rules of probability to compute probabilities of compound events in a uniform probability model.
Standard:
(+) Use permutations and combinations to compute probabilities of compound events and solve problems. *
Standard Identifier: F-IF.4
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Standard Identifier: F-IF.4
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Standard Identifier: F-IF.5
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
Standard Identifier: F-IF.5
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Showing 61 - 70 of 91 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881