Mathematics Standards
Results
Showing 21 - 30 of 45 Standards
Standard Identifier: G-SRT.5
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Prove theorems involving similarity.
Standard:
Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Prove theorems involving similarity.
Standard:
Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Standard Identifier: G-SRT.6
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
Standard Identifier: G-SRT.7
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Explain and use the relationship between the sine and cosine of complementary angles.
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Explain and use the relationship between the sine and cosine of complementary angles.
Standard Identifier: G-SRT.8
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. *
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. *
Standard Identifier: G-SRT.8.1
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Derive and use the trigonometric ratios for special right triangles (30°, 60°, 90°and 45°, 45°, 90°). CA
Define trigonometric ratios and solve problems involving right triangles.
Standard:
Derive and use the trigonometric ratios for special right triangles (30°, 60°, 90°and 45°, 45°, 90°). CA
Standard Identifier: G-SRT.9
Grade Range:
8–12
Domain:
Similarity, Right Triangles, and Trigonometry
Discipline:
Geometry
Conceptual Category:
Geometry
Cluster:
Apply trigonometry to general triangles.
Standard:
(+) Derive the formula A = 1/2 ab sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
Apply trigonometry to general triangles.
Standard:
(+) Derive the formula A = 1/2 ab sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
Standard Identifier: F-IF.4
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Standard Identifier: F-IF.4
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Standard Identifier: F-IF.5
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Standard Identifier: F-IF.5
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
Showing 21 - 30 of 45 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881