Mathematics Standards
Results
Showing 61 - 70 of 97 Standards
Standard Identifier: F-BF.3
Grade Range:
9–12
Domain:
Building Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Standard Identifier: F-BF.3
Grade Range:
9–12
Domain:
Building Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Standard Identifier: F-BF.4.a
Grade Range:
9–12
Domain:
Building Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2x^3 or f(x) = (x + 1)/(x − 1) for x ≠ 1.
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2x^3 or f(x) = (x + 1)/(x − 1) for x ≠ 1.
Standard Identifier: F-BF.4.a
Grade Range:
9–12
Domain:
Building Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2x^3 or f(x) = (x + 1)/(x − 1) for x ≠ 1.
Build new functions from existing functions. [Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types.]
Standard:
Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, f(x) =2x^3 or f(x) = (x + 1)/(x − 1) for x ≠ 1.
Standard Identifier: F-IF.4
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Standard Identifier: F-IF.4
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
Standard Identifier: F-IF.5
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
Standard Identifier: F-IF.5
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]
Standard:
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
Standard Identifier: F-IF.6
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Algebra II
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]
Standard:
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *
Interpret functions that arise in applications in terms of the context. [Emphasize selection of appropriate models.]
Standard:
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *
Standard Identifier: F-IF.6
Grade Range:
9–12
Domain:
Interpreting Functions
Discipline:
Math III
Conceptual Category:
Functions
Cluster:
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *
Interpret functions that arise in applications in terms of the context. [Include rational, square root and cube root; emphasize selection of appropriate models.]
Standard:
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. *
Showing 61 - 70 of 97 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881