Science (CA NGSS) Standards
Remove this criterion from the search
ESS2.E: Biogeology
Remove this criterion from the search
ESS3.B: Natural Hazards
Remove this criterion from the search
ESS3.C: Human Impacts on Earth Systems
Remove this criterion from the search
ETS1.C: Optimizing the Design Solution
Remove this criterion from the search
PS3.B: Conservation of Energy and Energy Transfer
Results
Showing 31 - 37 of 37 Standards
Standard Identifier: HS-ESS3-1
Grade Range:
9–12
Disciplinary Core Idea:
ESS3.A: Natural Resources, ESS3.B: Natural Hazards
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Earth and Space Science
Title: HS-ESS3 Earth and Human Activity
Performance Expectation: Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. [Clarification Statement: Examples of key natural resources include access to fresh water (such as rivers, lakes, and groundwater), regions of fertile soils such as river deltas, and high concentrations of minerals and fossil fuels. Examples of natural hazards can be from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting and soil erosion), and severe weather (such as hurricanes, floods, and droughts). Examples of the results of changes in climate that can affect populations or drive mass migrations include changes to sea level, regional patterns of temperature and precipitation, and the types of crops and livestock that can be raised.]
Disciplinary Core Idea(s):
ESS3.A: Natural Resources Resource availability has guided the development of human society. ESS3.B: Natural Hazards Natural hazards and other geologic events have shaped the course of human history; [they] have significantly altered the sizes of human populations and have driven human migrations.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Modern civilization depends on major technological systems.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-10.2.a-f: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2.a-e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS2.A; MS.LS4.D; MS.ESS2.A; MS.ESS3.A; MS.ESS3.B
Performance Expectation: Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. [Clarification Statement: Examples of key natural resources include access to fresh water (such as rivers, lakes, and groundwater), regions of fertile soils such as river deltas, and high concentrations of minerals and fossil fuels. Examples of natural hazards can be from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting and soil erosion), and severe weather (such as hurricanes, floods, and droughts). Examples of the results of changes in climate that can affect populations or drive mass migrations include changes to sea level, regional patterns of temperature and precipitation, and the types of crops and livestock that can be raised.]
Disciplinary Core Idea(s):
ESS3.A: Natural Resources Resource availability has guided the development of human society. ESS3.B: Natural Hazards Natural hazards and other geologic events have shaped the course of human history; [they] have significantly altered the sizes of human populations and have driven human migrations.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
Crosscutting Concepts: Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Modern civilization depends on major technological systems.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-10.2.a-f: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. WHST.11-12.2.a-e: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. Mathematics MP.2: Reason abstractly and quantitatively. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.LS2.A; MS.LS4.D; MS.ESS2.A; MS.ESS3.A; MS.ESS3.B
Standard Identifier: HS-ESS3-3
Grade Range:
9–12
Disciplinary Core Idea:
ESS3.C: Human Impacts on Earth Systems
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-5: Using Mathematics and Computational Thinking
Content Area:
Earth and Space Science
Title: HS-ESS3 Earth and Human Activity
Performance Expectation: Create a computational simulation to illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity. [Clarification Statement: Examples of factors that affect the management of natural resources include costs of resource extraction and waste management, per-capita consumption, and the development of new technologies. Examples of factors that affect human sustainability include agricultural efficiency, levels of conservation, and urban planning.] [Assessment Boundary: Assessment for computational simulations is limited to using provided multi-parameter programs or constructing simplified spreadsheet calculations.]
Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems The sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources.
Science & Engineering Practices: Using Mathematics and Computational Thinking Create a computational model or simulation of a phenomenon, designed device, process, or system.
Crosscutting Concepts: Stability and Change Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Modern civilization depends on major technological systems. New technologies can have deep impacts on society and the environment, including some that were not anticipated. Connections to Nature of Science: Science is a Human Endeavor Science is a result of human endeavors, imagination, and creativity.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.B; HS.LS2.A; HS.LS2.B; HS.LS2.C; HS.LS4.D; HS.ESS2.A; HS.ESS2.E Articulation across grade-bands: MS.PS1.B; MS.LS2.A; MS.LS2.B; MS.LS2.C; MS.LS4.C; MS.LS4.D; MS.ESS2.A; MS.ESS3.A; MS.ESS3.C
Performance Expectation: Create a computational simulation to illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity. [Clarification Statement: Examples of factors that affect the management of natural resources include costs of resource extraction and waste management, per-capita consumption, and the development of new technologies. Examples of factors that affect human sustainability include agricultural efficiency, levels of conservation, and urban planning.] [Assessment Boundary: Assessment for computational simulations is limited to using provided multi-parameter programs or constructing simplified spreadsheet calculations.]
Disciplinary Core Idea(s):
ESS3.C: Human Impacts on Earth Systems The sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources.
Science & Engineering Practices: Using Mathematics and Computational Thinking Create a computational model or simulation of a phenomenon, designed device, process, or system.
Crosscutting Concepts: Stability and Change Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible. Connections to Engineering, Technology, and Applications of Science: Influence of Engineering, Technology, and Science on Society and the Natural World Modern civilization depends on major technological systems. New technologies can have deep impacts on society and the environment, including some that were not anticipated. Connections to Nature of Science: Science is a Human Endeavor Science is a result of human endeavors, imagination, and creativity.
California Environmental Principles and Concepts:
Principle I The continuation and health of individual human lives and of human communities and societies depend on the health of the natural systems that provide essential goods and ecosystem services. Principle II The long-term functioning and health of terrestrial, freshwater, coastal, and marine ecosystems are influenced by their relationships with human societies. Principle III Natural systems proceed through cycles that humans depend upon, benefit from, and can alter. Principle IV The exchange of matter between natural systems and human societies affects the long-term functioning of both. Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.B; HS.LS2.A; HS.LS2.B; HS.LS2.C; HS.LS4.D; HS.ESS2.A; HS.ESS2.E Articulation across grade-bands: MS.PS1.B; MS.LS2.A; MS.LS2.B; MS.LS2.C; MS.LS4.C; MS.LS4.D; MS.ESS2.A; MS.ESS3.A; MS.ESS3.C
Standard Identifier: HS-ETS1-2
Grade Range:
9–12
Disciplinary Core Idea:
ETS1.C: Optimizing the Design Solution
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Engineering, Technology, and Applications of Science
Title: HS-ETS1 Engineering, Technology, and Applications of Science
Performance Expectation: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
Disciplinary Core Idea(s):
ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Design a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
Mathematics MP.4: Model with mathematics.
DCI Connections:
Connections to HS-ETS1.C: Optimizing the Design Solution include: Physical Science: HS-PS1-6; HS-PS2-3 Articulation across grade-bands: MS.ETS1.A; MS.ETS1.B; MS.ETS1.C
Performance Expectation: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
Disciplinary Core Idea(s):
ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed.
Science & Engineering Practices: Constructing Explanations and Designing Solutions Design a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.
Crosscutting Concepts: N/A
California Environmental Principles and Concepts:
Principle V Decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes.
California Common Core State Standards Connections:
Mathematics MP.4: Model with mathematics.
DCI Connections:
Connections to HS-ETS1.C: Optimizing the Design Solution include: Physical Science: HS-PS1-6; HS-PS2-3 Articulation across grade-bands: MS.ETS1.A; MS.ETS1.B; MS.ETS1.C
Standard Identifier: HS-PS1-6
Grade Range:
9–12
Disciplinary Core Idea:
PS1.B: Chemical Reactions, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept:
CCC-7: Stability and Change
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Physical Science
Title: HS-PS1 Matter and Its Interactions
Performance Expectation: Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.* [Clarification Statement: Emphasis is on the application of Le Chatelier’s Principle and on refining designs of chemical reaction systems, including descriptions of the connection between changes made at the macroscopic level and what happens at the molecular level. Examples of designs could include different ways to increase product formation including adding reactants or removing products.] [Assessment Boundary: Assessment is limited to specifying the change in only one variable at a time. Assessment does not include calculating equilibrium constants and concentrations.]
Disciplinary Core Idea(s):
PS1.B: Chemical Reactions In many situations, a dynamic and condition-dependent balance between a reaction and the reverse reaction determines the numbers of all types of molecules present. ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (secondary to HS-PS1-6)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.
Crosscutting Concepts: Stability and Change Much of science deals with constructing explanations of how things change and how they remain stable.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy WHST.11-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B Articulation across grade-bands: MS.PS1.B
Performance Expectation: Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.* [Clarification Statement: Emphasis is on the application of Le Chatelier’s Principle and on refining designs of chemical reaction systems, including descriptions of the connection between changes made at the macroscopic level and what happens at the molecular level. Examples of designs could include different ways to increase product formation including adding reactants or removing products.] [Assessment Boundary: Assessment is limited to specifying the change in only one variable at a time. Assessment does not include calculating equilibrium constants and concentrations.]
Disciplinary Core Idea(s):
PS1.B: Chemical Reactions In many situations, a dynamic and condition-dependent balance between a reaction and the reverse reaction determines the numbers of all types of molecules present. ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (secondary to HS-PS1-6)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.
Crosscutting Concepts: Stability and Change Much of science deals with constructing explanations of how things change and how they remain stable.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy WHST.11-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS3.B Articulation across grade-bands: MS.PS1.B
Standard Identifier: HS-PS2-3
Grade Range:
9–12
Disciplinary Core Idea:
PS2.A: Forces and Motion, ETS1.A: Defining and Delimiting Engineering Problems, ETS1.C: Optimizing the Design Solution
Cross Cutting Concept:
CCC-2: Cause and Effect: Mechanism and Explanation
Science & Engineering Practice:
SEP-6: Constructing Explanations and Designing Solutions
Content Area:
Physical Science
Title: HS-PS2 Motion and Stability: Forces and Interactions
Performance Expectation: Apply science and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.* [Clarification Statement: Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and modifying the design to improve it. Examples of a device could include a football helmet or a parachute.] [Assessment Boundary: Assessment is limited to qualitative evaluations and/or algebraic manipulations.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system. ETS1.A: Defining and Delimiting Engineering Problems Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary to HS-PS2-3) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (secondary to HS-PS2-3)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects.
Crosscutting Concepts: Cause and Effect Systems can be designed to cause a desired effect.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.PS2.A; MS.PS3.C
Performance Expectation: Apply science and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.* [Clarification Statement: Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and modifying the design to improve it. Examples of a device could include a football helmet or a parachute.] [Assessment Boundary: Assessment is limited to qualitative evaluations and/or algebraic manipulations.]
Disciplinary Core Idea(s):
PS2.A: Forces and Motion If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system. ETS1.A: Defining and Delimiting Engineering Problems Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary to HS-PS2-3) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (secondary to HS-PS2-3)
Science & Engineering Practices: Constructing Explanations and Designing Solutions Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects.
Crosscutting Concepts: Cause and Effect Systems can be designed to cause a desired effect.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.
DCI Connections:
Connections to other DCIs in this grade-band: N/A Articulation across grade-bands: MS.PS2.A; MS.PS3.C
Standard Identifier: HS-PS3-1
Grade Range:
9–12
Disciplinary Core Idea:
PS3.A: Definitions of Energy, PS3.B: Conservation of Energy and Energy Transfer
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-5: Using Mathematics and Computational Thinking
Content Area:
Physical Science
Title: HS-PS3 Energy
Performance Expectation: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. [Clarification Statement: Emphasis is on explaining the meaning of mathematical expressions used in the model.] [Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system’s total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. PS3.B: Conservation of Energy and Energy Transfer Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior. The availability of energy limits what can occur in any system.
Science & Engineering Practices: Using Mathematics and Computational Thinking Create a computational model or simulation of a phenomenon, designed device, process, or system.
Crosscutting Concepts: Systems and System Models Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes the universe is a vast single system in which basic laws are consistent.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.B; HS.LS2.B; HS.ESS1.A; HS.ESS2.A Articulation across grade-bands: MS.PS3.A; MS.PS3.B; MS.ESS2.A
Performance Expectation: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. [Clarification Statement: Emphasis is on explaining the meaning of mathematical expressions used in the model.] [Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.]
Disciplinary Core Idea(s):
PS3.A: Definitions of Energy Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system’s total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. PS3.B: Conservation of Energy and Energy Transfer Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior. The availability of energy limits what can occur in any system.
Science & Engineering Practices: Using Mathematics and Computational Thinking Create a computational model or simulation of a phenomenon, designed device, process, or system.
Crosscutting Concepts: Systems and System Models Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models. Connections to Nature of Science: Scientific Knowledge Assumes an Order and Consistency in Natural Systems Science assumes the universe is a vast single system in which basic laws are consistent.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics. N-Q.1-3: Reason quantitatively and use units to solve problems.
DCI Connections:
Connections to other DCIs in this grade-band: HS.PS1.B; HS.LS2.B; HS.ESS1.A; HS.ESS2.A Articulation across grade-bands: MS.PS3.A; MS.PS3.B; MS.ESS2.A
Standard Identifier: HS-PS3-4
Grade Range:
9–12
Disciplinary Core Idea:
PS3.B: Conservation of Energy and Energy Transfer, PS3.D: Energy in Chemical Processes
Cross Cutting Concept:
CCC-4: Systems and Systems Models
Science & Engineering Practice:
SEP-3: Planning and Carrying Out Investigations
Content Area:
Physical Science
Title: HS-PS3 Energy
Performance Expectation: Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). [Clarification Statement: Emphasis is on analyzing data from student investigations and using mathematical thinking to describe the energy changes both quantitatively and conceptually. Examples of investigations could include mixing liquids at different initial temperatures or adding objects at different temperatures to water.] [Assessment Boundary: Assessment is limited to investigations based on materials and tools provided to students.]
Disciplinary Core Idea(s):
PS3.B: Conservation of Energy and Energy Transfer Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. Uncontrolled systems always evolve toward more stable states—that is, toward more uniform energy distribution (e.g., water flows downhill, objects hotter than their surrounding environment cool down). PS3.D: Energy in Chemical Processes Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.
Crosscutting Concepts: Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. WHST.9-10.8: Gather relevant information from multiple authoritative print and digital resources (primary and secondary), using advanced searches effectively; assess the usefulness of each source in answering the research question; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and following a standard format for citation. WHST.11-12.8: Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism overreliance on any one source and following a standard format for citation. WHST.9-12.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS1.A; HS.ESS2.A; HS.ESS2.D Articulation across grade-bands: MS.PS3.B
Performance Expectation: Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). [Clarification Statement: Emphasis is on analyzing data from student investigations and using mathematical thinking to describe the energy changes both quantitatively and conceptually. Examples of investigations could include mixing liquids at different initial temperatures or adding objects at different temperatures to water.] [Assessment Boundary: Assessment is limited to investigations based on materials and tools provided to students.]
Disciplinary Core Idea(s):
PS3.B: Conservation of Energy and Energy Transfer Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. Uncontrolled systems always evolve toward more stable states—that is, toward more uniform energy distribution (e.g., water flows downhill, objects hotter than their surrounding environment cool down). PS3.D: Energy in Chemical Processes Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment.
Science & Engineering Practices: Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly.
Crosscutting Concepts: Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models.
California Environmental Principles and Concepts:
N/A
California Common Core State Standards Connections:
ELA/Literacy RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. WHST.9-12.7: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. WHST.9-10.8: Gather relevant information from multiple authoritative print and digital resources (primary and secondary), using advanced searches effectively; assess the usefulness of each source in answering the research question; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and following a standard format for citation. WHST.11-12.8: Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism overreliance on any one source and following a standard format for citation. WHST.9-12.9: Draw evidence from informational texts to support analysis, reflection, and research. Mathematics MP.2: Reason abstractly and quantitatively. MP.4: Model with mathematics.
DCI Connections:
Connections to other DCIs in this grade-band: HS.ESS1.A; HS.ESS2.A; HS.ESS2.D Articulation across grade-bands: MS.PS3.B
Showing 31 - 37 of 37 Standards
Questions: Curriculum Frameworks and Instructional Resources Division |
CFIRD@cde.ca.gov | 916-319-0881